Structure Formation: Bright side of the Universe Anatoly Klypin New Mexico State University

Also: Stefan Gottloeber (Astrophysikalisches Institut Potsdam) Gustavo Yepes (UAM, Madrid)

Cosmological n-body+hydro simulations Codes: SPH + TREE AMR + shock capturing hydro Physical processes: Compton cooling/heating on CMB Radiative gas cooling Star formation with simple approximations Metal enrichment Energy/momentum feedback from young stars and SN

Physics of forming galaxies

Small galaxies: cold flows

Large galaxies: hot accretion

10Mpc: only the central region has high resolution

Credits: Kravtsov 100pc resolution Z=4 To model formation of galaxies we need to deal with "gastrophysics"...

1 Mpc scale

100 kpc scale

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture. Galaxies too concentrated. Bulge/Disk 1:3 or higher.

Governato

3 10^12 solar

8 10^11 solar masses

Peak velocity higher than in the real Milky Way. No realistic feedback yet!

Improved resolution and more realistic stellar feedback makes more realistic galaxy models.

Main test: rotation curves should be flat.

Models on the right are better than they used to be, but still there are some defects in the central regions

Governato, Mayer, Brook 2008

Outflows: physics

High velocities are not created inside the regions of star formation: rms velocity in molecular clouds is 1-10 km/s

Young stellar cluster -> superbuble -> accelerated shock

4 kpc

Modeling ISM: 12 pc resolution

Early stages of evolution: first star cluster dumps its energy

Wave accelerates on declining density

Ceverino & Klypin 2007

Simulations of a Fragment of ISM Thin slices

Plane of disk

Orthogonal to the Disk plane

Tasker & Bryan 2008: Isolated MW. 50 pc resolution

210 kpc

FIG. 4.— Edge-on projections of the baryon density in the CFDBCK and DFDBCK simulations after 142 Myrs. Images are $\sim 210 \,\mathrm{kpc}$ across. Both simulations include feedback and radiative cooling, but the left-hand image (CFDBCK) has a low density cut-off and low efficiency for star formation whereas the right-hand image shows the disk with a high density cut-off and high star formation efficiency.

- Efficiency of star formation: mass consumption should be low
- Efficiency of star formation: energy release should be high
- Angular momentum: flat rotation curves + thin stellar disks
- Observed vis. modeled Outflows of gas from galaxies: velocities, metallicites, QSO absorption lines

processes

Ceverino & Klypin 2007

Kravtsov's ART hydro code: Physical processes included:

AMR shock capturing hydro

metallicity-dependent cooling + UV heating (Haardt & Madau). CLOUDY. Compton cooling

- Temperature range for cooling: 10²K -10⁸K
- Jeans length resolved with 4 cells
- Energy release from stellar winds+ SNII +SNI
- Thermal feedback: most * form at T< 1000K n>10cm⁻³
- Runaway stars: massive stars move with exp(-v/17km/s)

$$\frac{d\rho_{*,\text{young}}}{dt} = \frac{\rho_{\text{gas}}}{\tau}$$

au =2-20 Myrs

Effective τ =150-1000 Myrs

Mass consumption rate per free-fall time averaged over gas "molecular" gas (n>30cm⁻³) is 0.03

Fig. 1.— Rate of energy losses per unit mass from a single stellar population. Top panel shows the results from the STARBURST99 code, assuming a Miller-Scalo IMF for a mass range (0.1-100) M_{\odot}.

Cosmology: formation of MW galaxy

z=3.5 Major progenitor. 45 pc resolution Face-on view SFR =10Msun/year Ceverino & Klypin 2007

ART N-body+hydro code (Kravtsov)

400 kpc proper

Cold Flow regime

0.00 400. 10 Density 104

Slice of gas density

Ceverino & Klypin 2007

z=3.5 Major progenitor of MW. 45 pc resolution **Face-on view**

100 kpc proper

Stars

z=1.3 Major progenitor of MW. 45 pc resolution Face-on view

Ceverino & Klypin 2007

z=3.5 Major progenitor of MW. 45 pc resolution Face-on view

400 kpc proper

0.00 400. 7 10 10 10 <mark>Femperature</mark> 10 10 10¹ رد 10

Slice of temperature

Cold Flow regime

40pc resolution. Mvir(z=0)=1.e12Msun. Ndm=400K

Z=2.5

Ceverino & Klypin 2007

z=3.5 Major progenitor of MW. 45 pc resolution Face-on view

400 kpc proper

Cold Flow regime 400. 0.00 3.125 2.6001 Vmax =1000km/s 2.0752 Slice of gas 1.5502 velocity: Log scale in km/s 1.0253

Ceverino & Klypin 2007

z=3.5 Major progenitor of MW. 45 pc resolution Face-on view

400 kpc proper

Cold Flow regime

Slice of gas metallicity

Flat rotation curves are still the most sensitive test for feedback models

Combination of resolution and feedback improves the rotation curves

 10^{-2}

-3 10

-4) 10

-5 10

lt v

Deni

Disk galaxy: edge-on

5e+08

3.34e+08

1.92e+08

7.88e+07

2e+05

Gas energy

5e+08

3.34e+08

1.92e+08

7.88e+07

2e+05

Gas energy

Galaxies in numerical simulations

Figure 7. A qualitative comparison of observed and simulated clumpy discs at high redshift. Shown are V-Band images (UV rest-frame) of three galaxies from the Hubble Ultra Deep Field, representing the different appearances of the clumpy disks depending on the viewing angle: a "chain" galaxy (UDF 9974 at z = 1.3), a face-on "clump cluster" (UDF 9759 at z = 1.2), and a "tadpole" galaxy (UDF 6607 at z = 1.6). The simulations are viewed with about the same resolution, using as a proxy for the UV emission the stars younger than 200 Myr (top panel), 100 Myr (medium panel) and 10 Myr (bottom panel). The

Figure 3. A zoom-out gas surface-density maps showing the streams feeding galaxy A. Left: cold gas ($T < 5 \times 10^4$ K). Right: hot gas ($T > 3 \times 10^5$ K). The box size is 160×160 kpc, covering the whole virial sphere. The color refers to log gas surface density in units of H atoms cm⁻². Two major narrow streams carry the gas from well outside the virial radius to the inner ~ 20 kpc halo core, where they break into a multi-stream turbulent core before joining the inner disc of radius ~ 6 kpc, seen nearly edge-on at the box centre (mostly in white).

2.5

-0.074

-0.5

Guedes et al 2011: Milky Way model

Guedes et al 2011: Milky Way model

Guedes et al 2011: Milky Way model

FIG. 4.— Left panel: The *i*-band Tully-Fisher relation for the Pizagno et al. (2007) galaxy sample (*empty squares with error bars*). Filled circle: The Eris simulation. Here V_{80} denotes the circular velocity at the radius containing 80% of the *i*-band flux, as defined by Pizagno et al. (2007). Right panel: The stellar mass - halo mass relation at z = 0.1 from Behroozi et al. (2010), modified for a Kroupa IMF (*empty* squares with error bars). Errors bars include only statistical uncertainties. Filled circle: The Eris simulation with a photometric stellar mass of $\mathcal{M}_* = 3.2 \times 10^{10} \text{ M}_{\odot}$ and a virial mass of $\mathcal{M}_{\text{vir}} = 7.9 \times 10^{11} \text{ M}_{\odot}$ (see text for details).

Recent progress:

• "galaxies" lay on the Tully-Fisher relation: no problems with angular momentum

- Merging of two spiral galaxies (may) produce a spiral galaxy with very large disk.
- Barred "galaxies" are typical.

Physics and

- Subgrid physics: reduced cooling rates in places of star formation
- Goals: get to 20-50pc and to include some physics of molecular clouds. No subgrid physics (on its way: Kravtsov & Gnedin(Chicago), Ceverino (NMSU)
 - Correct physics of ISM is important for forming realistic galaxies

Conclusions

- Galactic Outflows are produced by forming galaxies: put it in right regime, it flies like a bird
- <u>Velocities:</u> 300-500 km/s are typical at z=2-3. Large (1000-2000 km/s) outflows happen frequently.
- <u>Direction</u> of outflows:
 - perpendicular to disk at small distances (10~kpc);
 - uncorrelated with disk at larger distances. Not random: outflows find holes in density field)
- <u>Small galaxies</u> tend to have <u>larger velocities</u> given sufficient SFR (Dekel & Silk again)
- Do not violate laws of physics simulating outflows. It is tempting, but do not do it.
- Need to fulfill two conditions to have feedback efficient to produce out flows:
 - overheating regime
 - high resolution: better 50 pc
- Mechanism for efficient feedback has important bottleneck: young stellar cluster => superbubble
- <u>Accelerating shocks</u>
- <u>Two important tests</u> for any design of feedback:
 - Flat rotation curves of galaxies (thin disks in spirals)
 - QSO absorption lines