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What is gravitational properties of torus?

• Ring is a particular case of the torus



Plan
 Gravitational potential of a torus (ring)

 “Newton’s theorem” for torus
 Role of the central mass for stability of a self-gravitating torus

 Particle trajectories in the outer potential of a torus and a 
central mass
 Lagrangian ring
 Region of unstable orbits

 Self-gravitating torus in the field of a central mass: N-body 
simulation
 Keplerian torus
 Equilibrium cross-section of self-gravitating torus

 Application to ring galaxies(?)

 What can you see if a gravitational lens is a ring galaxy?



Gravitational potential of a torus

B. Riemann devoted one of his last works to
the gravitational potential of a homogeneous torus
“About Potential of a Torus” (1864)

Our idea: We compose a torus of a set of infinitely thin rings .
Potential of a torus is a sum of potentials of such rings.
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Grav. potential of a homogeneous circular torus
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Grav. potential of infinitely thin ring
(a material circle)
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is the complete elliptical integral 
of the first kind

is the parameter of elliptical integral 

Torus

R=1 is major radius of a torus
R0 is minor radius

Geometrical parameter: r0= R0/R
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This expression for the torus potential is valid 
for both the inner and outer points.

where a dimensionless potential 
of the component ring is:

Bannikova et al., 2011, MNRAS

Grav. potential of a homogeneous circular torus

is the parameter of elliptical integral 
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Resulting expression:



Gravitational potential of a homogeneous circular torus

The potential curves for all values of r0 are seen to be 

inscribed into the potential curve of an infinitely thin 

ring of the same mass, located in the torus symmetry 

plane.

The approximate expression for the torus potential 

The outer potential of a homogeneous circular  

torus can be represented with good accuracy by the 

potential of an infinitely thin ring of the same 

mass. 

The dependence of the geometrical parameter r0

appears only in the torus hole

There is analogy with a result for a solid sphere (!)

r0=R0/ROuter region

G=M=R=1



Outer potential: analogy between
results for a solid sphere and  a torus

The outer potential of a solid sphere is equal 
to the potential of a material point 

The outer potential of a torus is approximately 
equal to the potential of a material circle 

If we want to investigate the particle motion in the outer region 
of a torus it is enough to use the potential of a material circle!



Role of a central mass

r0=0.3

** Torus is a doubly connected body =>
two weightlessness points in meridional plane:
outer point (in the center of symmetry) 
and inner (displace to the center torus)

As a result, the torus must be compressed along the major radius. 
To prevent this compression, an orbital motion is necessary: 
the gravitational force tending to compress the torus along the major radius 
is compensated by the centrifugal force.

The presence of a central mass is a necessary condition 
for the stability of a self-gravitating torus.



Lagrangian ring

The forces from the thin ring and the central 
mass must equilibrate at some distance (a 
region of unstable equilibrium).

We will call the geometrical place of all 
points, where the balance of these forces are 
realized,  a Lagrangian ring. 

Let’s consider the motion of particle in the grav. field of the thin ring and 
the central mass in the equatorial plane.
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Lagrangian ring

The equation for the radius of Lagrangian ring  (ρL<1)
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For Mc=Mring ρL=0.8

ρ =r/R,   R=1 is the radius of the ring

K() and E() are the complete
elliptical integrals

q=Mc /Mring



Region of unstable orbits
(motion in an equatorial plane)

Effective potential 
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For small values of angular momentum 
Ueff has the minimum which corresponds
the stable circle orbits.

Increasing of the moment leads to 
a shift of the potential minimum in
the region of increasing ρ. 

Starting from  some ρ the effective 
potential hasn’t the minimum and
stable orbits don’t exist.



Region of unstable orbits
(motion in an equatorial plane)

Extremum of Ueff leads to 
the following equation:
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Graphic solution of this equation shows that there is a restriction on the momentum 
for which circle orbits exist.

Two solutions for ρ correspond stable and unstable circle orbits.
For Mc=Mring the last stable orbit corresponds to ρ=0.6 and Imax=0.7.

q=Mc /Mring

q=0.5, 1, 1.5



Region of unstable orbits
(motion in an equatorial plane)

The example of unstable orbit 
for the different initial values 
of radius and velocity 

Equation of motion



Region of unstable orbits
(motion in an equatorial plane)

Thus there is a region of unstable orbits 
bounded  by the radius of last stable orbit and 
Lagrangian ring. 

1. Gravity of the central mass dominates near to 
Mc – it is possible formation of keplerian disk

2. Region of unstable orbits – competition 
between the grav. forces from Mc and Mring

3. Behind the Lagrangian ring the forces from 
ring dominate and particle trajectory enwinds a 
ring. 

Frequent collisions are  possible in the region of 
unstable orbits and, as a result,  this region could be 
cleaned off the matter.

It is possible that the gap in Hoag’s object arose due 
to influence of the region of the unstable orbits (?)  



Disappearance of Lagrangian and 
weightlessness rings

равораовравоекеке

Substituting torus by the ring 
we simplify the problem about motion 
of the particle. 

This allow us to see some gravitational 
properties of the torus.

LR and WR disappear  for more thick 
torus r0>0.17   =>

The homogeneous circular torus 
can’t exist.

What is the shape and density of self-gravitating torus? 



Self-gravitating torus in the field of the central 

mass: N-body simulation

• Initial condition:   Keplerian torus

• Mtorus=(0.02-0.1)Mc

• Number of particles   N≈104

• Gravitating particles are the Plammer’s spheres with radius ε=0.01

• The equations of motion 

The total gravitational force acting on i-th particle



Elliptical Keplerian torus
Colors show the particles which has similar eccentricities.

N=8192
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All particles are gathered in one plane. -

e

Circle obits are located in the center of cross-section

Elliptical orbits fill in the boundaries of the torus



Initial condition: Keplerian torus

t = 0 t = 25 t = 50 t = 75

t = 100 t = 150 t = 200

r0=0.5 M=0.056Mc N=8 192



Density distribution in torus cross-section

a) b) c)

An average density distribution of particles in equilibrium cross-section of torus N=16 384 :
a) r0=0.3, Mtorus=0.02Mc, b) r0=0.5, Mtorus=0.056Mc c) r0=0.6, Mtorus=0.08Mc,
d)r0=0.7, Mtorus=0.11Mc. The parameters are chosen so as in all cases the tori have the same
values of initial volume density.

Equilibrium cross-section of self-gravitating torus has an oval shape with Gaussian
distribution of particles .
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Bannikova et al. 2012, MNRAS



Distribution of particles in the thick torus

The inner edge of the torus is formed by particles  that are moving in elliptical orbits 
and pass through the pericentre, while the outer edge is formed by particless that pass 
through the apocentre.
.  

Mtorus=0.05Mc r0=0.5          N=8192 dt=1 000
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Distribution of z-component of velocity
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Mtorus=0.02Mc r0=0.2          N=8192



What can we see if a gravitational 
lens is a ring galaxy?



Three Einstein rings

Bannikova & Kotwitsky, 2014, MNRAS

Sources
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Observer



Conclusion
• The outer gravitational potential of the homogeneous circular 

torus is approximately equal to the potential of infinitely thin 
ring.

• There are Lagrangian ring and the region of unstable orbit in the 
system “infinitely thin ring+Mc”.

• The equilibrium cross-section of the self-gravitating torus has 
an oval shape with  Gaussian density distribution.

• Analysis of the Einstein rings arising due to lensing by a disc
with the hole and a central mass has shown a diversity of 
possible cases. In such system one, two and three Einstein rings 
can form.


