Molecular Astrophysics

Interstellar chemistry Brief history, astrophysical context

Translucent molecular clouds: unresolved problems CH Non-Maxwell or velocity distributions, XDRs, PDRs H₃⁺: X-ray driven chemistry, ionisation rate DIBs: change of ionisation balance

VLT/UVES Observations: Molecules in Magellanic Clouds first optical detection of CH, CH+, CN beyond Galaxy

HST & FUSE observations of CO and H₂ in the Galaxy N(CO) vs. N(H₂) Complemented by High R CH, CH+, CN (ESO CES & McDonald)

Y. Sheffer, S. Federman, D. Lambert, D. Welty Roland Gredel, MPIA Heidelberg

Interstellar molecules

Brief History

1922	5780, 5797 stationary features (Heger 1922)
1926	Eddington, molecules cannot survive ISRF
1934	Merrill, several strong DIBs detected
1937-39	CH, CH+, CN: stationary optical absorption lines
1951	Bates & Spitzer, first models (Kramers & ter Haar 1946)
1963	Radio astronomy, OH, NH ₃
1970	H ₂ Copernicus satellite, UV absorption lines
1973	Herbst & Klemperer, ion-molecule reactions
1975	X-ogen (HCO ⁺)
2005	some 125 gas-phase molecules confirmed

Interstellar Medium

Phase transitions: $H^+ \rightarrow H \rightarrow H_2$ • Hot ionised HII: 5 10⁵ K, 5 10⁻³ cm⁻³ • Warm HI/HII: 8000 K, 0.3 cm⁻³ • Cool atomic: 80 K, 30 cm⁻³ • Cold molecular: 10-100 K, 100 - 10³ cm⁻³ • Diffuse \rightarrow giant molecular clouds • Pressure equilibrium: nT = const

Interstellar Dust

Absorption & polarisation of starlight

Variation with wavelength: reddening E_{B-V} Visual extinction $A_V = -2.5 \log F_V/F_0$ » Absorption law: $F_V/F_0 = \exp(-kx)$ $A_V/E_{B-V} = 3.1$ depends on dust properties Gas/Dust ratio: 0.01

Molecular clouds

Diffuse clouds and translucent clouds
Optical detections of molecules, DIBs
Giant molecular clouds and isolated globules
Rich chemistry, large and complex organic molecules
Hot cores, UCHII regions, PDRs

Interstellar chemistry

ion-molecule reactions

- Ionising source: photons (diffuse clouds), X-rays, cosmic rays (dense clouds)
- Dissociative & radiative recombination
 - free electrons required
- Neutral-neutral reactions
- Initiation of gas phase chemistry: H₂ required

Interstellar chemistry

by radiative association: $H(1s) + H(1s) \rightarrow H_2 + hv$ Very show to be seen in first order for homonuclear molecules on grain surface, H + H:gr $\rightarrow H_2 + gr$ $H_2 \rightarrow H_3^+$ $H_2 + CR \rightarrow H_2^+$ $H_2^+ + H_2 \rightarrow H_3^+$

• $H_3^+ + e \rightarrow H_2 + H$

I. $H \rightarrow H_2$

II.

dissociative recombination rate Fast (Amano 1988, Larsson 2000) Slow (Plasil et al. 2003) minority view

The initial reactions and radiative association in dense interstellar clouds

Interstellar chemistry

New Standard Model
 Bettens 1995, 3785 reactions, 409 species

Famous problems remain: DIBs, H₃⁺, CH⁺ I. Carriers of Diffuse Interstellar Bands II. DIBs and H₃⁺: impact on ionisation rates III. CH⁺ formation scenarios not understood

H3

Geballe & Oka 1996; McCall et al. 2002 Very important detection

Abundances too General correla if dissociative recombination is fast

General correlation N(H3)~

H_3^+ in Cyg OB2 No. 12

McCall et al. 1998

Formation in diffuse material, very long pathways

Cecchi-Pestellini & Dalgarno 2000
 Dense clumps of gas embedded in diffuse material
 C₂ formation at n = 7000 cm⁻³

Gredel, Black & Yan 2001 • $T_{kin} = 35K$, n = 600 cm⁻³ • increased radiation field from OB stars • X-ray induced chemistry $\zeta = 0.6 - 3 \ 10^{-15} \ s^{-1}$

Cyg OB2

X-ray induced chemistry

Cool molecular clouds subjected to X-rays Gredel, Lepp, Dalgarno, Black, Yan; various papers

 $\begin{array}{ccc} M + Xray \rightarrow M^{++} & + 2e \\ \bullet & C^{++} + H_2 \rightarrow CH^+ + H^+ \end{array}$

Energy deposition by fast secondary electrons

- Coulomb losses to thermal electrons
- Ionisation and excitation of H and H₂

He, $n \rightarrow 2$, 3 singlet and triplet S and P states and to $4^{1}P$

H₂ X-ray excitation

Different selection rules UV: Lyman & Werner bands, continuous NIR H_2 emission Optical emission: high Δv

$$T_{gas}$$
, n, I_{UV} , v_s , x_e

X-ray induced chemistry

Radiation field in dense molecular clouds Energetic, secondary electrons from X-ray ionisation H₂ + e > H₂*

 $\begin{array}{ccc} H_2 & \xrightarrow{} & H_2(vJ) + UV \text{-photons (Lyman and Werner bands)} \\ H_2(vJ) & \xrightarrow{} & H_2 & + \text{NIR-photons (E2 cascade)} \end{array}$

Increased photoionisation and photodissociation rates

Explains C/CO ratio in dense clouds

Cyg OB2 No. 12

Detailed chemical model including X-ray ionisations

T, n_H , n_e constrained by observations Cool gas with T = 35 K, n = 600 cm⁻³

 $\zeta = 0.6 - 3 \ 10^{-15} \ s^{-1}$

Model prediction:

Observable amounts of H₂O[‡] in absorption S/N > 1000 spectrum of Cyg OB2 no. 12

H_3^+ in the diffuse ISM

McCall et al. 2003 Large abundance towards ζ Per High cosmic ray ionisation rate $\zeta = 1.2 \ 10^{-15} \ s^{-1}$

General solution !?

The ironic twists in H_3^+

- Lepp et al. 1988, large molecules
- Chemical models including photoelectric heating of LM: darge, observable abundance of H.⁺
 - Wrong, slow recombination rate use
 - Model predictions did not stimulate observations to detect H₃
- II. New laboratory measurements: H₃⁺ + e very fast
 Models: H₃⁺ abundance too low to be detected
 Stimulated huge observational efforts to detect H₃⁺
- III. 2003: large abundance of H₃⁺ detected in diffuse ISM
 Ionisation rate to be increased?

 $N_{obs}/N_{model} = 1000$ $C^{+} + H_{2} \rightarrow CH^{+} + H \qquad \Delta E = 0.4 \text{ eV}$

Thermal formation scenarios
Elitzur & Watson 1978, 1980: J-type shocks
Pineau des Forets et al. 1986: C-type shocks
Falgarone, dissipation of interstellar turbulence, boundary layers

CH⁺ formation in hot gas, T = 1000 – 4000 K

CH - CH⁺ velocity difference

Detailed shock model towards z Oph (Draine 1986) Model result: v(CH) - v(CH⁺) = 3.4 km s⁻¹

Very high R observations Dv < 0.5 km

FIG. 1.-Proposed geometry of the preshock material, shock transition zone, and postshock material on the line of sight to ζ Oph (see text)

409

L20

LAMBERT, SHEF

Spatially related stars: N(CH⁺) ~ E_{B-V}
 Tight correlation in single translucent clouds
 Gredel et al. 2003: 2004)

Radial velocities agree within errors
 Earlier results with v(CH) - v(CH⁺) > 4 km s⁻¹ cannot be reproduced: upper limit to shock velocities

C₂ observations → n, T • CH⁺ formation sites in cool gas

Interstellar CH[±]

Thermal models

turbulence

- Multiple shocks, model for dissipation of IS
 - Gredel, Pineau des Forets & Federman 2002
 - Model for dissipation of IS turbulence
 - Criss-crossing, low-velocity shocks
- Non-thermal models.
 - Non-Maxwellian velocity distributions
 - Gredel van Dishoeck & Black 1993, 1997
 - broad lines: CH+ highly reactive, no thermal profiles
 - Super-thermal C⁺
 - b(CH⁺) = b(CH) = 1 2 km s⁻¹

Special case: Pleiades
White 1984: very large CH⁺ abundances at low optical depths.
ISM very close to stub
Very high UV ionisation rates
CH⁺ produced in PDR

LMC & SMC observations

Kueyen/UVES & archival data

7 SMC & 13 LMC sightlines, V = 11 - 14 mag Selected from Tumlinson (2002) FUSE $H_2 > 10^{19}$ cr Reanalysis of FUSE \rightarrow

- T₀₁= 45 90 K
- L_{UV} = 3 10 (30 900 near 30 Dor and SW SMC)
 - $n_{\rm H} = 100 600 \ {\rm cm^{-3}}$

LMC: $E_{B-V} = 0.08 - 0.51 \text{ mag}$ SMC: $E_{B-V} = 0.07 - 0.34 \text{ mag}$ Galactic foreground absorption 0.02 - 0.06 mag Interstellar Molecules in the Magellanic Clouds

Why Magellanic Clouds?
Increased radiation fields, factors of ~ 5
Lower metallicities, factors of 2 (LMC) to 4-5 (SMC)
Lower gas-to-dust ratios, factors of 3 (LMC) to 8 (SMC)
Test models & expectations in different physical & chemical environment

Observing technique

relative

$N(CH) - N(H_2)$ relation

Galaxy: N(CH) ~ N(H₂) Danks, Federman & Lambert (1984), Mattila (1986), Rachford et al. (2002) van Dishoeck & Black (1989), n_H = 500 - 1000 cm⁻³

LMC, LMC: same regression

Interstellar CH

- Very abundant in LMC and SMC Equilibrium gas-phase chemistry in quiescent gas
 - $C^+ + H_2 \rightarrow CH_2 \rightarrow CH$ $\rightarrow CH/H_2$ correlation expected
 - removed by photodissociation
 N(CH) ~ 0.67 k₁ ×(C⁺) N(H₂) n(H)/{I_{UV} G₀(CH) ...}
 → Galaxy: CH/H₂ reproduced by (I_{UV} = 1) n_H = 500 cm⁻³
 - LMC/SMC: $x(C^+)$, $I_{UV} \rightarrow n_H = 1200 2900 I_{UV}$
 - Inconsistent with densities inferred from H₂

CH ~ KI, NaI CH+ ~ CH

15

CH⁺ in the Galaxy

CH⁺ in LMC formed in PDRs $CH^+ + H_2 \rightarrow CH_2^+$ $+ H_2 \rightarrow CH_3^+$ $+ e \rightarrow CH$ N(CH) ~ 0.67 k₁ N(CH⁺) f(H₂) n(H) / I_{UV} G₀(CH) N(CH)/N(CH⁺) \rightarrow n_H = 100 - 1000 cm⁻³, consistent with densities from H₂ analysis

The diffuse interstellar bands

226 DIBs confirmed, maybe up to 400 BD+63°1964 (Tuairisg et al. 2000) Confusion limit, >1 carrier responsible for a given feature

Carriers

- Large C-bearing molecules in gas phase
- PAH and fullerene cations
- Lya induced 2-photon absorption by H₂

Needed:

Use CH, CH⁺, CN, C₂, CaI, CaII, NaI to determine variations in physical parameters

The diffuse interstellar bands

- Ehrenfreund et al. 2002
- **DIBs in the MCs**
 - Not too different from Galactic clouds
 - despite low metallicity

Sollerman et al. 2005

- **DIBs towards SNIa in NGC 1448**
 - Correlations with Call and Nal

Local conditions affect DIB strength, in particular IUV SN absorptions: DIBs are readily formed and survive different physical & chemical environments -> universal carbon chemistry

DIB carriers

- Large Molecules -> fundamental role in ionisation balance
 - Liszt 2003 PAH grain neutralisations
 - Heating balance: radiative and dielectronic recombination of charged ions
 - PAH \rightarrow PAH + H rapid destruction of protons
 - Ionisation rate must be significantly increased

Diffuse Interstellar Bands in MCs

- Several detections.
 - No obvious correlation with N(HI) as in Galaxy-
 - Good correlation with E_B
 - On average weaker 5780, 5797, 6284 DIBs by factors of 10 in LMC, 20 in SMC, relative to HI by factors of 2 relative to E_{B-V} W(6284)/N(HI) factors 30-70 below Galaxy C_2 -DIBs as strong as in Galaxy
 - No uniform scaling relations

$FUV H_2$ & CO absorption lines

HST: CO A-X band, 1229 - 1544 a

- 60 sightlines, 43 new results FUSE: H₂ (2,0), (3,0), (4,0) Lyman bands
 - 58 sightlines, 33 new results
- Saturation \rightarrow profile fitting
 - cloud structure confined by CH
 - \rightarrow accurate N(H₂), N(CO)
- ESO & McDonald data
- CH, CH+, CN
- R = 170,000 220,000

FUV absorption lines of H₂

UV: Lyman & Werner bands T_{rot} , n_H , I_{UV}

$FUV H_2$ & CO absorption lines

H₂ thermal excitation in shocks

 $X^{1}\Sigma = v \int collisiona$ excitation by H, H2, He Boltzmann distribution up to NIR H₂ emission $v'J' \rightarrow v''J'' E2$ C-type vs. J-type \rightarrow evolutiongry state L(H₂) ~ L(YSO) T, n, (v.)

H₂ in interstellar shocks

N(CO) vs. $N(H_2)$

N(CO) vs. $N(H_2)$

- Break in quadratic relation
 - log N(H2) ~ 1.5 log N(CO) < 10¹⁴ cm⁻²
 - log N(H2) ~ 3.1 log N(CO) < 10¹⁴ cm⁻²
 - good connection to dark cloud values (CO from W_{CO} ; N(H₂) inferred from A_V
 - CO shielding parameter
 - Break caused by change in CO photochemistry
 - Initiation of CO UV shielding
 - confirmation of vD&B1988 shielding function
 - Break: Low density vs. high density chemistry

N(CO) vs. $N(H_2)$

CH vs. H_2 , CH⁺ vs. CO, H_2

CH vs. H_2 , CH⁺ vs. CO, H_2

Summary

- Diatomic molecules
 First detection of CH, CH⁺ (SN1987A) & CN
 CH production in extensive PDRs together with CH⁺
 Dense gas (CN-like CF) towards Sk 143 & Sk -67°2
- II. Diffuse Interstellar Bands
 - 5780, 5797, 6284 weaker by 10 (LMC) 20 (SMC) relative to HI, weaker by 2 – 6 relative to E_{B-V} I_{UV}, metallicity
 - C₂-DIBs towards Sk143 and Sk-67°2, similar strengths as in Galaxy
 - \rightarrow no uniform scaling relations

Summary

- Direct determination of X = N(H₂)/N(CO)
 - Importance of CO UV shielding

 $N(CO) \sim N(H_2)$

- Importance of CO production via CH*
- LePetit 2006, Sonnentrucker 2007
- Reproduction of observed CH⁺ levels in non-Maxwellian velocity fields

Outlook

DIBs: Jena, D. Huisken → UV spectra of potential carriers

