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Existence of Radiation Mediated Shocks

» Fast shocks' downstream pressure:
2ny4 (particles) ; agg /3 (radiation)

For fast enough shocks,

the DS pressure is dominated by radiation, if
(i.e. optically thick system) = RMS.

The DS equilibrium temperature:

315 1/4 c ,
Ty = < 2nu€ﬁ3c3> ~0.16 ( !
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Existence of Radiation Mediated Shocks e St

Ranny Budnik

Introduction

» Fast shocks' downstream pressure:
2ny4 (particles) ; agg /3 (radiation)

» For fast enough shocks,

Introduction

the DS pressure is dominated by radiation, if Numerical results
(i.e. optically thick system) = RMS. e

» The DS equilibrium temperature:

(315 33 1/4 € n, \1/4
Td = <Wnu5h C > ~ 0.16 (mlo—15> keV
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Introduction

» Shocks running in CC SN are expected to be RMS.

» Close to the photosphere = expected SN
precursor in thermal UV /X-ray.!
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Shock Breakout e St

Ranny Budnik

Introduction

» Shocks running in CC SN are expected to be RMS.

» Close to the photosphere = expected SN
precursor in thermal UV /X-ray.!

» XRF060218/SN2006aj?> and SN 2008d3 found early .
after the explosion, non thermal > 10keV spectrum. Numerica results

Analytic model

>

Other explanations: photon acceleration [Wang et al. 07, 08], not
a breakout [Li 08, Mazzali et al. 09]

1Colgate 74, Falk 78, Klein & Chevalier 78
2Campana et al. 06

3Soderberg et al. 08

*Katz, Budnik & Waxman 09



RMS velocity transition

Cold Upstream
=
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RMS velocity transition

Cold Upstream
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v, I, e
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Inv. Compton
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Radiation
dominated
Downstream
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Urag > Up/
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Urag ~ Tnpmpc
or
132 2
Urad ~ Eﬁumpc
c

~
~

Radiation
Mediated Shocks

Ranny Budnik

Introduction

Introduction
Numerical results

Analytic model



Physical Assumptions

» Steady state shock

> p, e, et treated as one fluid (plasma)

tpl

tSCQt

~
~

_11 N 1/2
101122 p}
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Physical Assumptions

» Steady state shock

> p, e, et treated as one fluid (plasma)

tol —111y 172
o e

e

tscat Ne

» Radiation mechnisms:
» Compton scattering
» Bremsstrahlung
» Pair production and annihilation
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Physical Assumptions

» Steady state shock

> p, e, et treated as one fluid (plasma)

tpl

—11 0y 1/2
~ 1071 2/
tscat Ne

» Radiation mechnisms:

» Compton scattering
» Bremsstrahlung
» Pair production and annihilation

Scaling relations:

Only Bremsstrahlung self absorption depends on
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NR RMS

» Steady state, 1D, self consistent solutions of: Radiation
transport and conservation of P, F and n,.

» Numerical solutions, analytic estimates

» NR: Numerical solution by Weaver (1976): diffusion
approximation, Wien spectrum.
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NR RMS

» Steady state, 1D, self consistent solutions of: Radiation
transport and conservation of P, F and n,.

» Numerical solutions, analytic estimates

» NR: Numerical solution by Weaver (1976): diffusion
approximation, Wien spectrum.
» Shock structure:

» Deceleration on a scale of 371\,
» Production of downstream equilibrium radiation:
» High density, low velocity: all in equilibrium
> Low density, high velocity:
T increases inside the shock velocity transition,
Slow thermalization follows until T = T4
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Shock structure

(c) Eq = 20 MeV

-0.3 -0.10.1 0.3 0.5 0.7

X (106 cm)

Low ny, high G, High n,, low G,

SWeaver 1976
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Analytic estimates: thermalization width Radiation

Mediated Shocks

Ranny Budnik

ny: Production/Diffusion (Wein equilibrium)

Thermalization length: St el R

L Nyeq | _ mec? A
T~ fBc Queit ) Q’y,eff = QeNphedTC T eff8eff
7,€I.
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Analytic estimates: thermalization width Radiation

Mediated Shocks

Ranny Budnik

ny: Production/Diffusion (Wein equilibrium)

Thermalization length: Structure of NR

RMS
Ny.eq mec?
Lt ~ fc ) Q'y,eff = QeNphedTC T NetGeft
v,eff. [
ntroduction
Numerical results
High temperatures inside the shock transition: A

ﬁu > 0'07’7%3 ( effgeff) 4/1 5

T

Nesr =~ |
08 (ONeoy = moc?/4T)




Analytic estimates: T °

1
~ T. — (Diffusi
nys = Qy( S’nd)3ndarﬁdc( iffusion)
12
NysTs = 75nu (Momentum cons.)

5Katz, Budnik & Waxman 2009
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Analytic estimates: T °

nys =~ Qy(Ts, nd)3ndUTﬁdC (Diffusion)

12

nysTs = = €Ny (Momentum cons.)

Velocity - temperature
relation:

5Katz, Budnik & Waxman 2009
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Radiation

Analytic estimates: TS e Mediated Shocks

Ranny Budnik

1 . .
(lequlOn) Structure of NR

Ny s & Ts,n
Y,S Qw( S d)3”dUTﬁdC o

12
nysTs = 75nu (Momentum cons.)

Velocity - temperature
relation:
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Radiation

Application to X-ray Breakout® Medited Shocks
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» Envelope density p 0", § = (1 — r/R)
(n=3, 3/2 for radiative (BSG, WR), convective (RSG) )

» Shock velocity (interpolating ST-Sakurai)’:

1/2 Application to
Vs (E) / 5_0'2n X-ray Breakout
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Application to X-ray Breakout®

» Envelope density p 0", § = (1 — r/R)
(n=3, 3/2 for radiative (BSG, WR), convective (RSG) )
» Shock velocity (interpolating ST-Sakurai)’:
1/2
ve ~ () /2 5-0.2n

> 0E ~ (k/kT) 1705 erg

"Colgate 74; Falk 78; Klein & Chevalier 78
8Katz, Budnik & Waxman 09
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Radiation

Application to X—ray Breakout8 Mediated Shocks

Ranny Budnik

» Envelope density p o< 0", 6 = (1 —r/R)
(n=3, 3/2 for radiative (BSG, WR), convective (RSG) )

» Shock velocity (interpolating ST-Sakurai)’: .
v ()12 0702 e
> O ~ (k/kT) 105 erg

Post-shock thermal
energy Upag = L2pv2

£\ 1/2
10 (M—Sé) ~ 0.24c
=

Optical depth

"Colgate 74; Falk 78; Klein & Chevalier 78
8Katz, Budnik & Waxman 09



Existence of RRMS e St

Ranny Budnik

» SN shock breakout can reach mildly relativistic
(I3 =z 1) velocities:
GRB980425/SN1998bw?, GRB030329/SN2003dh??,
GRB031203/SN2003Iw!!, XRF060218/SN2006aj'2.

°Galama et. al. 98
©OHjorth 03,Stanek 03
UTagliaferri et al. 04
12Campana et al 06



Existence of RRMS

» SN shock breakout can reach mildly relativistic
(I3 =z 1) velocities:
GRB980425/SN1998bw?, GRB030329/SN2003dh??,
GRB031203/SN2003Iw!!, XRF060218/SN2006aj'2.

> A relativistic jet penetrating through a stellar mantle!3:
s ~ /2 (decelerating shock)
I'h, & 2 (forward shock into the mantle)

°Galama et. al. 98

©OHjorth 03,Stanek 03

UTagliaferri et al. 04

12Campana et al 06

3¢ g. Woosley 1993; Waxman & Meszaros 2001,2003
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Solving RRMS structure!®

» Anisotropy = Diffusien-Appreximatien — full transport.

> Relativistic corrections to the Scattering (KN) =
transport is frequency dependent.

> eTe™ pairs.

» Relativistic corrections to production mechanisms.

“Budnik et al. 2010, in prep
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Solving RRMS structure!®

» Anisotropy = Diffusien-Appreximatien — full transport.

> Relativistic corrections to the Scattering (KN) =
transport is frequency dependent.

> eTe™ pairs.
» Relativistic corrections to production mechanisms.

Assumptions:

“Budnik et al. 2010, in prep
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Solving RRMS structure!® Medared ocks

Ranny Budnik

» Anisotropy = Diffusien-Appreximatien — full transport.

> Relativistic corrections to the Scattering (KN) =
transport is frequency dependent.

> eTe™ pairs.
» Relativistic corrections to production mechanisms.

Introduction

Assumptions: [——r

Analytic model

Complications of the solution

» Full transport with hydrodynamics, no definite boundary
conditions

» Sonic points crossings

» Solution by iterations of radiation/hydro

“Budnik et al. 2010, in prep
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Radiation

Pair domination and subsonic regime Mediated Shocks

Ranny Budnik

Numerical results

MFB/(FHBU)O'G

> ny > n,; T ~ mec? = relativistic speed of sound
Css ~ C/V/3 > vy



Radiation

Radiation spectrum within the shock Mediated Shocks
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Radiation spectrum in the DS Mediated Shocks

Ranny Budnik

9
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hv/m ¢
o

Numerical results




Analytic model for the Immediate DS

The immediate DS supplies the photons stopping the
plasma:

Diffusion /Production

Compton-Pair
of v's (8~ 1/3):

equilibrium:
p) p)
N Nefr -2 sy meC
L =2 —L~05
ni 5<15> (364) ni T
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Analytic model for the Immediate DS

The immediate DS supplies the photons stopping the
plasma:

Diffusion /Production

Compton-Pair
of v's (8~ 1/3):

equilibrium:
p) p)
N Nefr -2 sy meC
L =2 —L~05
ni 5<15> (364) ni T

(average over ~ 3 optical depths!)

Radiation
Mediated Shocks

Ranny Budnik

Numerical resu Its

Analytic model



Analytic model for the Immediate DS

The immediate DS supplies the photons stopping the

plasma:
Diffusion /Production Compton-Pair
of v's (8~ 1/3): equilibrium:
2 2
ny Nest 2 Ny MeC
— =~ 25— 3 —L =~0.5
2~ 25 (52) (350) "~ 057

(average over ~ 3 optical depths!)

Num. results compared to CPE
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Analytic model for the transition

» The structure is set by photons from the immediate DS

(hv ~ mec? in the shock frame) penetrating deep into
the US.

» In the transition T ~ I'm.c? (Compton “equilibrated”)

» KN correction for Compton: o /o1 ~ 2
Corrections for 0., behave the same
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Analytic model for the transition

» The structure is set by photons from the immediate DS

(hv ~ mec? in the shock frame) penetrating deep into
the US.

» In the transition T ~ I'm.c? (Compton “equilibrated”)

» KN correction for Compton: o /o1 ~ 2
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Analytic model for the non thermal beam

The beam originates from Compton scattering of US going
hv ~ mec? photons on the deceleration profile. In the shock

frame:
hv' ~ M mec

2

(since T ~ mec?)
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Analytic model for the non thermal beam

The beam originates from Compton scattering of US going
hv ~ mec? photons on the deceleration profile. In the shock
frame:

hv' ~ M mec?

(since T ~ mec?)

A simplifies expression:

a; & 1, 0 = hv/mec?

Radiation
Mediated Shocks
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Summary

» NR RMS
» High T within the shock transition
» SN breakout: s 2 0.1 = X-ray emission 2 10keV
Expected high energy photon component from early
breakouts
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Summary

» NR RMS

» High T within the shock transition
» SN breakout: s 2 0.1 = X-ray emission 2 10keV

Expected high energy photon component from early
breakouts

» RRMS

>

We derived the numerical steady state solution
+ analytical approximations

» Immediate DS:
» Subsonic regime, weak subshock
» High energy power law beam,

1

beamed towards the DS
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