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Abstract  The next generation of astronomical surveys will revolutionize our understanding of 

the Universe, raising unprecedented data challenges in the process. One of them is the 

impossibility to rely on human scanning for the identification of unusual/unpredicted 

astrophysical objects. Moreover, given that most of the available data will be in the form of 

photometric observations, such characterization cannot rely on the existence of high resolution 

spectroscopic observations. The goal of this project is to detect the anomalies in the Open 

Supernova Catalog (http://sne.space/) with use of machine learning. We will develop a pipeline 

where human expertise and modern machine learning techniques can complement each other. 

Using supernovae as a case study, our proposal is divided in two parts: the first developing a 

strategy and pipeline where anomalous objects are identified, and a second phase where such 

anomalous objects submitted to careful individual analysis. The strategy requires an initial data 

set for which spectroscopic is available for training purposes, but can be applied to a much larger 

data set for which we only have photometric observations. This project represents an effective 

strategy to guarantee we shall not overlook exciting new science hidden in the data we fought so 

hard to acquire. 
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1. Introduction 

Supernova stars (SNe) are ones of the most brightness and interesting objects in the 

Universe. They are responsible for chemical enrichment of interstellar medium; density waves 

induced by their energetic explosions causes the star formation; SNe are origin of high energy 

cosmic rays; moreover, thanks to SNe we are studying the composition and distance scale of 

the Universe which defines its following destiny. 

The generation of precise, large, and complete supernova surveys in the last years has 

increased the need of developing automated analysis tools to process this large amount of data. 

These scientific observations present both great opportunities and challenges for astronomers 

and machine learning (ML) researchers. 

The lack of spectroscopic support makes the photometrical supernova typing is very 

required. The analysis of big supernova dataset with ML methods is needed to distinguish the 

supernova by types on base of N-parameter grid. Such study allows us to purify the considered 
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SN sample from non-supernova contamination as well — the problem, which is relevant for all 

large supernova database that collect SN candidates without careful analysis of each candidate 

and basing on the secondary indicators (proximity to the galaxies, transient behaviour, 

arise/decline rate on light curves (LCs), absolute magnitude). It is also expected that during 

such analysis the unknown variable objects or SNe with unusual properties can be detected. As 

an example of unique objects one can refer to SN 2006jc — SN with very strong but relatively 

narrow He I lines in early spectra (∼30 similar objects are known, [25]), SN 2005bf — 

supernova attributed to SN Ib but with two broad maxima on LCs, SN 2010mb — unusual SN 

Ic with very low decline rate after the maximum brightness that is not consistent with 

radioactive decay of 56Ni, ASASSN-15lh — for some time it was considered as the most 

luminous supernova ever observed (two times brighter than super-luminous SNe), later the 

origin of this object was challenged and now it is considered as a tidal disruption of a 

main-sequence star by a black hole. Finding such objects (and then studying them more 

closely) is one of the main aims of the current project. As such sources are typically rare, the 

task of finding them can be framed as an anomaly detection problem. 

Astronomers have already benefited from developments in machine learning [2], in 

particular for exoplanet search [22, 29, 26], but the synergy is far from that achieved by other 

endeavours in genetics [17], ecology [9] or medicine [30], where scientific questions drive the 

development of new algorithms. Moreover, given the relatively recent advent of large data sets, 

most of the ML efforts in astronomy are concentrated in classification [16, 15, 19] and 

regression [13, 6] tasks. 

Astronomical anomaly detection has not been yet fully implemented in the enormous 

amount of data that has been gathered. As a matter of fact, barring a few exceptions, most of 

the previous studies can be divided into only two different trends: clustering [27] and subspace 

analysis [12] methods. More recently, random forest algorithms have been extensively used by 

themselves [3] or in hybrid statistical analysis [24]. Although all of this has been done to 

periodic variables there is not much done for transients and even less for supernova. 

In this study we search the anomalies in photometrical data of the Open Supernova Catalog
a
 

[11]. We use the Isolation Forest as an outlier detection algorithm that identifies anomalies 

instead of normal observations [18]. This technique is based on the fact that anomalies are data 

points that are few and different. Similarly to Random Forest it is built on an ensemble of 

binary (isolation) trees. 

2 Data 

2.1 The Open Supernova Catalog 

The data are drawn from the Open Supernova Catalog [11]. The catalog is constructed by 

combining many publicly available data sources (such as Asiago Supernova Catalog, Carnegie 

Supernova Project, Gaia Photometric Science Alerts, Nearby Supernova Factory, Panoramic 

Survey Telescope & Rapid Response System (Pan-STARRS), SDSS Supernova Survey, 

Sternberg Astronomical Institute Supernova Light Curve Catalogue, Supernova Legacy 

Survey (SNLS), MASTER, All-Sky Automated Survey for Supernovae (ASAS-SN), iPTF, 

etc.) and from individual publications. It represents an open repository for supernova metadata, 

                                                             
 
a
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light curves, and spectra in an easily downloadable format. This catalog also includes some 

contamination from non-SN objects.  

Our choice is justified by the fact that the catalog incorporates the data for more than 5 × 10
4
 

SNe/SNe candidates (∼ 1.2 × 10
4
 of SNe have > 10 photometrical observations and ∼ 5×10

3
 of 

SNe have spectra). For comparison, SDSS supernova catalog contains only ∼ 4 × 10
3
 of SNe 

LCs and ∼ 600 SNe with spectra. 

The catalog contains the data in different photometrical passbands. To have a more 

homogeneous data sample, we chose only those SNe that have LCs in g′r′i′, gri or BRI filters. 

We assume that g′r′i′ filters are close enough to gri and transform BRI to gri (see Sect. 2.2). We 

require >= 3 photometrical points in each filter with a 3-day binning. After this cut, our sample 

contains 3197 objects (2026 objects in g′r′i′, 767 objects in gri, and 404 objects in BRI). 

2.2 Transformation between BRI and gri 

To increase the sample we convert the Bessel‘s BRI into gri filters using the Lupton‘s (2005) 

transformation equations
b
. These equations are derived by matching SDSS DR4 photometry to 

Peter Stetson‘s published photometry for stars: 

 

 
 
 
 

 
 
       –            –            

                  –            

      –            –            

      –            –    –        

      –            –    –        

      –            –    –        

                      (1) 

 

3 Anomaly detection 

3.1.  LCs fit 

It is more convenient to implement the ML algorithm to the data with uniform time grid 

which is unfortunately not the case with supernovae. Commonly used technique to transform 

unevenly distributed data onto uniform grid is to fit them with Gaussian processes (GP). 

Usually, each light curve is fitted by GP independently. However, in this study we developed 

the MULTIVARIATE GAUSSIAN PROCESS
c

 interpolation that allows correlating 

multi-color LCs and approximates the data by GP in all filters in a one global fit (for details see 

Kornilov et. 2019, in prep.). 

When the fit by MULTIVARIATE GAUSSIAN PROCESS was done, we checked the 

results of approximation by eye. Those SNe with unsatisfactory fit were removed from the 

further consideration (mainly the objects with bad photometrical quality). We also 

extrapolated the fit to have a bigger temporal coverage. In the end we got a sample that 

consists of 1999 objects. 

                                                             
 
b
 http://www.sdss3.org/dr8/algorithms/sdssUBVRITransform.php 

c
 https://github.com/matwey/gp-multistate-kernel 
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Based on the results of approximation we extracted photometry (in flux) in the range of [−20, 

100] days with 1-day bin relative to the LC maximum in r filter and the kernel parameters. 

After the approximation procedure, each object has 373 features: 121 × 3 fluxes in three 

bands, 9 fitted parameters of Gaussian Process kernel, and logarithm of likelihood of the fit. 

We examine two cases of outliers search: with all features and with smaller number of features 

obtained by dimensionality reduction. 

      

Fig1. Left panel: sample three-dimensional set of labeled data. Right panel: the same data set reduced into 

two-dimensional space by t-SNE algorithm. 

 

Fig2. Isolation forest applied to the two different sample data sets (left panel and right panel respectively). Redder 

points are ranked as anomalies. 

3.2. Dimensionality Reduction 

Each object has its own flux scale due to the different origin and different distance. So, 

before the dimensionality reduction procedure we normalized each vector of 363 

photometrical points by its maximum value and used the maximum value as one more feature. 

Then, we applied t-SNE [21] for dimensionality reduction of the data with 374 features: we 

obtained 7 feature reduced data sets: from 2 to 8 features. 

In Fig. 1 we show t-SNE applied to sample data set in three-dimensional space. One may see 

that t-SNE is a nonlinear dimensionality reduction technique keeping vicinity of adjacent 

points. 
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Table1. List of found anomalies. 

Name Coordinates Object type Ref. 

SN2016bln 13 34 45.49 +13 51 14.3 Ia-91T [7] 

SN2013cv   16 22 43.16 +18 57 35.6 SN Ia-pec [35, 5] 

SN1000+0216   10 00 05.87 +02 16 23.6 SLSN [8] 

SN2006kg 01 04 16.98 +00 46 08.9 AGN [4, 34, 28] 

Gaia16aye 19 40 01.13 +30 07 53.4   Binary microlensing event [1,33] 

   

3.3. Isolation Forest 

Isolation forest is an ensemble of random isolation trees. Each isolation tree is a space 

partitioning tree similar to a widely-know Kd-tree. However, in contrast to Kd-tree, space 

coordinate (a feature) and a split value are selected at random for every node of the isolation 

tree. This algorithm leads to an unbalanced tree unusable for spatial search, but the tree has the 

following important property. A path distance between the root and a leaf is shorter on average 

for points distanced in space from ―normal‖ data. This allows us to construct enough random 

trees to estimate average root-leaf path distance for every data sample that we have, and then 

rank the data samples based on the path length. 

In Fig. 2 we show isolation forest applied to the different sample data sets. Note that the 

major advantage of the isolation forest is that it doesn‘t make any assumptions on normal data 

distribution. At the left panel of Fig. 2 we could fit the data by two normal probability 

distribution function and then find outliers. This approach fails for the right panel of Fig. 2 

where the isolation forest still succeeded. 

We run the Isolation Forest algorithm on each data set (see Sect. 3.2) and obtained a list of 

anomalies. 

4. Results 

We visually inspected ∼ 100 outliers among a total 1999 objects. Using the publicly 

available sources we checked what kind of astrophysical objects they are. The most prominent 

outliers are listed in Table 1 and described below, the rest are still being studied. 

4.1. Peculiar SNe Ia 

Type Ia supernova phenomenon is an explosion of a carbon-oxygen white dwarf that exceed 

the Chandrasekhar limit either by matter accretion from a companion star or by merging with 

another white dwarf [32, 14, 31]. SNe Ia are used as universal distance ladder since their 

luminosity at maximum light is approximately the same. However, SNe Ia can be divided by 

subtypes and not all of them are suitable for cosmology. 
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Fig3. Light curves in gri filters of SN Ia-91T 2016bln [23]. 

SN2016bln [7], classified by our code as anomaly, belongs to the so-called 

1991T-like-supernovae subtype (see Fig. 3). SNe Ia-91T are characterized by higher peak 

luminosity and broader LCs than a normal SN Ia, and different early spectrum evolution. 

Another novelty is SN2013cv ([35], see Fig. 4). This peculiar supernova has large peak 

optical and UV luminosity and show an absence of iron absorption lines in the early spectra. 

Cau at al. suggest that SN2013cv is an intermediate case between the normal and 

super-Chandrasekhar events [5]. 

4.2. Superluminous SNe 

Superluminous SNe (SLSN) are supernovae with an absolute peak magnitude M < −21 mag 

in any band. According to [10] SLSN can be divided into three broad classes: SLSN-I without 

hydrogen in their spectra, hydrogen-rich SLSN-II that often show signs of interaction with 

circum-stellar material (CSM), and finally, SLSN-R, a rare class of hydrogen-poor events with 

slowly evolving LCs, powered by the radioactive decay of 
56

Ni. 

SN 1000+0216 (Fig. 5) was discovered in the framework of the Canada-France-Hawaii 

Telescope Legacy Survey Deep Fields and has a redshift z = 3.9. It may be an example of a 

pulsational pair-instability SN or a SLSN-II which extreme optical emission is explained by 

the strong interaction between the expanding ejecta and massive CSM [8]. 

4.3.  AGN 

SN2006kg was erroneously classified as Type II supernovae ([4], see Fig. 6). The following 

studies identified it as an active galactic nucleus (AGN [34, 28]). 

 

Fig4. Light curves in gri filters of peculiar SN2013cv [5, 34]. 
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Fig5. Light curves in gri filters of superluminous SN1000+0216 [8]. 

 

Fig6. Light curves in gri filters of SN2006kg [28]. 

 

4.4. Binary microlensing event 

Gaia16aye [1] is an object with the most non-SN behaviour in our set of outliers (Fig. 7). In 

[33] it was reported that Gaia16aye is a binary microlensing event – gravitational microlensing 

by binary systems — the first ever discovered towards the Galactic Plane. 

 

Fig7. Light curves in gri filters of binary microlensing event Gaia16aye 

(http://gsaweb.ast.cam.ac.uk/alerts/alert/Gaia16aye/followup) 
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5. Conclusions 

The development of large synoptic sky surveys has led to a discovery of huge number of 

supernovae and supernova candidates. Among the SN discovered every year, only 10% have 

spectroscopic confirmation. The amount of astronomical data increases dramatically with time 

and already beyond human capabilities. While now community has dozens of thousands SN 

candidates, during ten-year survey Large Synoptic Sky Telescope (LSST, [20]) will discover 

over ten million supernovae (and only a small fraction of them will receive a spectroscopic 

confirmation). The LSST cadence will allow receiving the light curves for ∼ 105 SNe, but 

before these SNe will be used in any physical analysis, they must be classified by types. In 

order to process this information and to extract all possible knowledge, machine learning 

techniques become necessary. Such approach will allow not only to classify supernova 

candidates by known types, but to reveal other variable objects (novae, counterparts of GW 

alerts, kilonovae, GRB afterglows) that were mistakenly classified as SN and what is even 

more important to detect astronomical objects with strange physical properties – anomalies. 

Finding such objects (and then studying them more closely) is of high priority and one of the 

main aims of the current study. 

We used the Isolation Forest algorithm to search the anomalies in the Open Supernova 

Catalog. During the data pre-processing we fitted the supernova LCs in three (gri) filters by 

Gaussian processes. The GP-MULTISTATE-KERNEL
d
 (Kornilov et al. 2019, in prep.) was 

specially developed to introduce the correlation between the filters. As a result, we found 

∼ 100 anomalies, among which peculiar Type Ia SNe, SLSN, AGN, binary microlensing 

event. 
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