Федеральное государственное бюджетное учреждение науки Специальная астрофизическая обсерватория Российской академии наук

> На правах рукописи УДК 524.7-1/-8

Котов Сергей Сергеевич

Поиск активных ядер галактик и изучение их физических свойств по данным среднеполосного фотометрического обзора на 1-м телескопе Шмидта

Специальность 01.03.02 — «астрофизика и звёздная астрономия»

Диссертация на соискание учёной степени кандидата физико-математических наук

Научный руководитель: кандидат физико-математических наук, заведующий Лабораторией Спектроскопии и Фотометрии Внегалактических Объектов САО РАН Додонов Сергей Николаевич

Нижний Архыз — 2022

Оглавление

Стр.

Введе	ние	4			
Глава	1. Методы создания репрезентативных выборок квазаров	14			
1.1	Введение	14			
1.2	Современные оптические обзоры: методы наблюдений,				
	алгоритмы отбора квазаров, селекционные эффекты	16			
	1.2.1 Отбор по широкополосным цветам в SDSS, выборка				
	SDSS-DR14Q	16			
	1.2.2 Отбор квазаров по переменности в SDSS, выборка				
	QSO_VAR_S82	18			
	1.2.3 Обзор СОМВО-17	20			
	1.2.4 Обзор ALHAMBRA	22			
	1.2.5 Обзор COSMOS	23			
1.3	Выбор методики наблюдений	26			
1.4	Выводы				
1.5	Результаты главы 1	30			
_					
Глава	2. Среднеполосный фотометрический обзор на 1-м				
	телескопе Шмидта	31			
2.1	Наблюдения	31			
	2.1.1 Модернизация телескопа	31			
2.2	Обработка наблюдательных данных	36			
	2.2.1 Первичная редукция изображений	37			
	2.2.2 Астрометрия	38			
	2.2.3 Фотометрия объектов	40			
	2.2.4 Составление полного каталога объектов	41			
2.3	Результаты главы 2	42			
Глава	3. Методика отбора квазаров	43			
3.1	Концепция методики отбора квазаров				
3.2	Отбор объектов				

3.3	Определение фотометрических красных смещений	51					
3.4	Оценка полноты отбора квазаров	54					
3.5	Результаты главы 3	56					
Глава	4. Исследование функции светимости квазаров	57					
4.1	Введение	57					
4.2	Функция светимости квазаров	57					
4.3	Сравнение с результатами других обзоров	62					
4.4	Результаты главы 4	63					
Заклю	чение	65					
Списо	к литературы	68					
Списо	к рисунков	80					
Список таблиц							
Прило	жение А. Каталог квазаров	85					

Введение

Активные ядра галактик (AGN) - одни из самых ярких объектов во Вселенной. Их источник энергии - аккреция вещества на сверхмассивную черную дыру (СМЧД): когда газ приближается к СМЧД, его температура повышается и он начинает излучать в широком диапазоне длин волн, от гамма-квантов до радиоизлучения. При этом AGN не только показывают непрерывное излучение аккреционного диска, но также демонстрируют эмиссионные линии от рентгеновского до инфракрасного спектральных диапазонов. В свою очередь, эмиссионные линии могут быть широкими или узкими, в зависимости от ориентации AGN относительно наблюдателя и распределения вещества, поглощающего излучение, вокруг активного ядра ([1; 2]). AGN с широкими эмиссионными линиями обозначаются как активные ядра I типа, в то время как AGN с узкими эмиссионными линиями – как активные ядра II типа. Для многочисленных задач в различных областях астрофизики, от физики высоких энергий до космологии, проблема определения полного числа активных ядер галактик является фундаментальной. AGN изучаются в контексте моделей эволюции галактик [3], поскольку есть свидетельства тесной корреляции между СМЧД и свойствами галактик [4; 5], хотя причинное происхождение этих зависимостей не является общепринятым [6; 7]. Кроме того, благодаря большой светимости, оптически самые яркие AGN I типа (квазары) позволяют нам проследить распределение материи с ранних времен (в настоящее время самый далекий квазар, подтвержденный спектроскопией, находится на z = 7,1, [8]). Квазары также могут использоваться для расчета ограничений на космологические модели: Буска и др. [9] обнаружили барионные акустические осцилляции (БАО) в Ly_{α} лесу в спектре квазаров, и в перспективе планируют измерить функцию БАО через кластеризацию квазаров. Также рассматриваются возможности использования квазаров в качестве стандартных свечей [10-12].

Исследование эволюции пространственной плотности и функции светимости квазаров с красным смещением является одним из важнейших методов изучения эволюции AGN. С их помощью мы можем получить ограничения на физические модели роста сверхмассивных черных дыр в галактиках ([13—15]). Также функция светимости позволяет оценить вклад AGN во внегалактический ультрафиолетовый фон ([16; 17]).

Корректное построение функции светимости квазаров является нетривиальной задачей. Основная трудность заключается в получении репрезентативной выборки объектов во всём исследуемом диапазоне характеристик, таких как красное смещение, тип активного ядра, его абсолютная величина и т.д.. Существует множество наблюдательных методов поиска активных ядер и составления таких выборок, испытывающих влияние селекционных эффектов разного рода.

За последнее время удалось достичь существенного продвижения в понимании космологической эволюции функции светимости AGN. По наблюдениям в оптическом и рентгеновском диапазонах стало ясно, что их пространственная плотность быстро растет от z = 0 до $z \sim 2$, а на более высоких красных смещениях, z > 3, начинает падать ([18; 19]). При этом наблюдаются существенные различия в пространственной плотности квазаров по данным в оптике, рентгене и радиодиапазоне ([20], рис. 1). Уменьшение числа квазаров, отобранных в оптическом диапазоне, может быть вызвано увеличением доли поглощенных объектов среди полного числа AGN и селекционными эффектами. Имеющиеся выборки AGN на высоких красных смещениях, отобранные по данным рентгеновских обзоров, содержат всего несколько десятков объектов на z > 3. Также выборки AGN на больших z, полученные по данным радио и рентгеновских обзоров, страдают от неполноты [21]. В настоящее время наибольшей полноты выборки квазаров удаётся достичь при помощи среднеполосной фотометрии в оптическом диапазоне. Среднеполосный фотометрический обзор COMBO-17 [22] был проведен на относительно малой площади (0.78 кв. градуса) и впервые позволил даже по небольшой выборке (189 AGN) проследить поведение функции светимости квазаров в диапазоне красных смещений 1.1 < Z < 4. Обзор ALHAMBRA [23] проводился на 3.5-м телескопе обсерватории Калар-Альто с использованием набора из 20 среднеполосных фильтров в интервале длин волн 3500 – 9700 А, а также трёх стандартных широкополосных инфракрасных фильтров J, H и K. Наблюдения были проведены для 8 площадок размером от 0.19 до 0.50 квадратных градуса, общей площадью 2.38 квадратных градуса. Глубина выборки ограничена звездной величиной в среднеполосном фильтре с центральной длиной волны 675 нм: $m_{678} < 23.5^m$, что приблизительно соответствует

 $r_{SDSS} < 24^m$. Всего было отобрано 1079 объектов: 585 по двум эмиссионным линиям и 494 по трём и более эмиссионным линиям. Полнота выборок оценивается авторами, соответственно, в 73% и 67% на z < 2 и в 85% и 77% на z > 2 [24]. Данные ALHAMBRA подтверждают результаты, полученные COMBO-17 о падении пространственной плотности AGN на высоких красных смещениях. Однако данные о падении пространственной плотности AGN на высоких красных красных красных смещениях не являются вполне надежными и расходятся с данными более глубокого обзора COSMOS (155 объектов на z > 3.1 в поле 1.64 квадратных градуса, [25]), по которым спад пространственной плотности AGN выражен гораздо слабее. Вопрос остаётся открытым и требует дальнейшего изучения.

Рисунок 1 — Различие в пространственной плотности квазаров, отобранных по данным оптических, рентгеновских и радиообзоров [20]

Целью данной работы является изучение эволюции активных ядер галактик и построение их функции светимости в диапазоне красных смещений 0.1 < z < 5.

Для достижения поставленной цели необходимо было решить следующие **задачи**:

- На основе наблюдательных данных, полученных на 1-м телескопе Шмидта Бюраканской обсерватории, провести анализ пространственного распределения квазаров поля HS47.5-22 площадью 2.38 кв. гр. до z ~ 5, и построить их функцию светимости. Провести сравнение с результатами обзоров SDSS, COMBO-17, COSMOS, ALHAMBRA.
- 2. Разработать методику отбора квазаров по данным среднеполосной фотометрии, полученным на 1-м телескопе Шмидта БАО НАН. Создать максимально полную выборку квазаров поля. Провести определение

фотометрических красных смещений отобранных кандидатов в квазары. Промоделировать полноту отбора квазаров по среднеполосным фотометрическим данным.

3. Провести оценку селекционных эффектов, влияющих на полноту выборки квазаров в обзорах SDSS, COMBO-17, COSMOS, ALHAMBRA, оценить селекционные эффекты полученной нами выборки.

Основные положения, выносимые на защиту:

- Исследованы возможности модернизированного 1-м телескопа Шмидта БАО НАН для глубокой фотометрии в широких полях с широкополосными и среднеполосными фильтрами. Показано, что для звездообразных объектов в широкополосных фильтрах за 2 часа экспозиции достигается глубина 25^m, а в среднеполосных фильтрах за 1 час экспозиции достигается глубина 23^m.
- Результаты применения методики отбора кандидатов в квазары по среднеполосным и широкополосным фотометрическим данным в поле HS47.5-22. Разработанная автором методика использует в качестве критерия отбора плотность ближайших соседей в многомерном цветовом пространстве и данные фотометрии в ближнем инфракрасном диапазоне.
- 3. Каталог из 682 квазаров в поле HS47.5-22. Для 473 из них впервые проведена классификация и определены красные смещения по данным среднеполосной фотометрии на 1-м телескопе Шмидта и спектроскопии на телескопе БТА САО РАН.
- 4. Показано, что функция светимости квазаров, построенная по полученной выборке, демонстрирует более высокие значения в диапазоне красных смещений 3 < z < 4, в сравнении с данными обзора COMBO-17.

Научная новизна:

- 1. Впервые были получены среднеполосные фотометрические наблюдательные данные для однородного поля HS47.5-22 площадью 2.38 квадратных градуса до $R_{AB} = 22.5^m$.
- 2. Впервые разработан алгоритм отбора кандидатов в квазары, использующий как данные среднеполосной и широкополосной фотометрии на 1-м телескопе Шмидта, так и данные оптических обзоров SDSS и DECaLS, инфракрасного обзора WISE, астрометрического обзора

GAIA, рентгеновского обзора ROSAT и радио обзороа FIRST. Оценена эффективность применения алгоритма для задач отбора квазаров и поиска необычных объектов.

- 3. Впервые произведен отбор кандидатов в квазары в поле HS47.5-22 площадью 2.38 квадратных градуса до $R_{AB} = 22.5^m$.
- 4. Впервые создан однородный до $R_{AB} = 22.5^m$ каталог кандидатов в квазары в поле HS47.5-22, содержащий данные 682 объектов.
- Впервые по созданному каталогу квазаров построена функция светимости, демонстрирующая более высокие значения в диапазоне красных смещений 3 < z < 4, в сравнении с данными обзоров SDSS, COMBO-17, COSMOS, ALHAMBRA.

Научная и практическая значимость

- Представленный в диссертации новый метод отбора квазаров позволяет создавать репрезентативные выборки для построения функции светимости и изучения космологической эволюции активных ядер галактик.
 Это позволит уточнить имеющиеся представления об эволюции сверхмассивных черных дыр во Вселенной.
- 2. Полученный в ходе работы каталог квазаров с фотометрическими красными смещениями является актуальным для анализа пространственной плотности квазаров и построения их функции светимости для изучения эволюции активных ядер галактик.

Апробация работы. Основные результаты работы докладывались на:

- 1. "QSO Samples Properties Study" (устный доклад). Fifth Byurakan international summer school. 12-23 сентября 2016 г., Бюракан, Армения
- "1-м телескоп Шмидта : первые результаты" (соавтор доклада). Астрофизика высоких энергий сегодня и завтра – 2016. 20-23 декабря 2016 г., Москва
- "Оценка полноты выборки квазаров в Слоановском обзоре" (постер). Астрофизика высоких энергий сегодня и завтра – 2016. 20-23 декабря 2016 г., Москва
- 4. "Active galactic nuclei search" (устный доклад). 11th Serbian Conference on Spectral Line Shapes in Astrophysics. Šabac, Serbia, August 21-25, 2017

- 5. "1-м телескоп Шмидта БАО: первые результаты" (устный доклад). Всероссийская астрономическая конференция 2017 года (ВАК-2017). 17-22 сентября 2017 г., Ялта
- 6. "Выборка квазаров в поле HS47.5-22" (соавтор доклада). Астрофизика высоких энергий сегодня и завтра 2017. 18-21 декабря 2017 г., Москва
- "Среднеполосный Бюраканский обзор: оценка селекционных эффектов" (устный доклад). Актуальные проблемы внегалактической астрономии. Пущино, 24 – 27 апреля 2018
- "Поиск квазаров с помощью среднеполосной фотометрии" (устный доклад). VII Пулковская молодежная астрономическая конференция. 28-31 мая 2018 г.
- "Отбор квазаров по наблюдениям в среднеполосных фильтрах" (устный доклад). Астрофизика высоких энергий сегодня и завтра 2018. 18-21 декабря 2018 г., Москва
- 10. "OPTICAL IDENTIFICATION OF X-RAY SOURCES IN THE HS47.5-22 FIELD" (соавтор постера). ADASS XXX. 8-12 ноября 2020, онлайн
- "Quasars physical properties study based on the medium-band photometric survey" (устный доклад). 13th Serbian Conference on Spectral Line Shapes in Astrophysics. 23-27 августа 2021, Белград, Сербия
- 12. "Изучение физический свойств квазаров по данным среднеполосного фотометрического обзора" (устный доклад). ВАК-2021, 23-28 августа 2021, Москва
- "One-Meter Schmidt Telescope of the Byurakan Astrophysical Observatory: New Capabilities" (соавтор доклада). 12th Gaia Science Alerts Workshop. 8-12 ноября 2021, Крит, Греция
- "Исследования поля HS47.5-22" (соавтор доклада). Традиционный конкурс-конференция научных, научно-технических и научно-популярных работ САО РАН. 8 февраля 2022, Нижний Архыз

Публикации. Основные результаты по теме диссертации изложены в 6 печатных изданиях, 5 из которых изданы в журналах, рекомендованных ВАК.

 Movsessian, T. A., Dodonov, S. N., Gabrielyan, V. V., Kotov, S. S., Gevorgyan, M. H.; "New Capabilities of One-Meter Schmidt Telescope of the Byurakan Astrophysical Observatory after modernization Communications of the Byurakan Astrophysical Observatory, Vol. 64, Issue 1, pp. 92–101. (2017)

- Dodonov, S. N., Kotov, S. S., Movsessian, T. A., Gevorgyan, M. H.; "Onemeter Schmidt telescope of the Byurakan Astrophysical Observatory: New capabilities"; Astrophysical Bulletin, Vol. 72, Issue 4, pp. 473–479 (2017)
- Kotov S., Dodonov S., Grokhovskaya A.; "Quasars' physical properties study based on the medium-band photometric survey"; Astronomische Nachrichten, Vol. 343, Issue 1/2, e210092 (2022)
- Kotov S., Dodonov S.; "Active Galactic Nuclei Search"; Atoms, Vol. 5, Issue 4 (2017)
- Grokhovskaya A., Dodonov S.N., Movsessian T.A., Kotov S.S.; "The gMOSS: the galaxy survey and galaxy populations of the large homogeneous field Mon. Not. R. Astron. Soc., Vol. 513, Issue 4, pp. 5973-5987 (2022)
- Kotov, S. S., Dodonov, S. N., Movsessian, T. A., Grokhovskaya A. A.; "A catalog of quasars created from the results of a medium-band photometric survey at the 1-m Schmidt telescope"; Astronomy Letters, Vol. 48, Issue 8 (2022)

Личный вклад.

- В работах [1, 2] автор принимал участие в модернизации 1-м телескопа Шмидта БАО НАН: измерение кривых пропускания фильтров, изучение температурной стабильности ПЗС-детектора. Участие в балансировке телескопа, разработке системы освещения подкупольного экрана плоского поля. Участие в отладке системы наведения и ведения телескопа.
- 2. В работах [3, 4, 6] вклад автора определяющий. Автором разработана методика автоматического отбора квазаров по данным широкополосной фотометрии, среднеполосной фотометрии, инфракрасных данных UnWISE, морфологии обзора DECaLS, данных о параллаксах и собственных движениях GAIA, а также по оптическим отождествлениям рентгеновских и радиоисточников. Автором создана программа для отбора квазаров по спектральным распределениям энергии вручную, проведено моделирование полноты отбора квазаров, создан каталог квазаров. Автором проведено вычисление пространственной плотности квазаров, выполнена к-коррекция, учет межгалактического по-

глощения, построение функции светимости квазаров. Автором проведено сравнение полученной пространственной плотности и функции светимости квазаров с результатами обзоров SDSS, COMBO-17, COSMOS, ALHAMBRA.

3. В работах [3, 4, 5, 6] автор принимал участие в проведении среднеполосного фотометрического обзора поля HS47.5-22, около 100 наблюдательных ночей. Также автором проводились эксперименты с применением различных методов обработки изображений, полученных на 1-м телескопе, наравне с соавторами. Автором проводилась спектроскопия квазаров и галактик на телескопе БТА САО РАН, наравне с соавторами.

Объем и структура работы. Диссертация состоит из введения, четырёх глав, заключения и приложения. Полный объём диссертации составляет 105 страниц с 30 рисунками и 3 таблицами. Список литературы содержит 112 наименований.

Во **введении** обосновывается актуальность исследований, проводимых в рамках данной диссертационной работы, приводится обзор научной литературы по изучаемой проблеме, формулируется цель, ставятся задачи работы, обосновывается научная новизна и практическая значимость представляемой работы.

Первая глава посвящена описанию различных методов поиска активных ядер галактик и методик создания репрезентативных выборок квазаров. В разделе 1.1 приводится описание развития методов поиска квазаров, рассматриваются их сильные и слабые стороны. В разделе 1.2 подробно рассматриваются современные обзоры, нацеленные на поиск активных ядер галактик, а также приводится анализ методов создания выборок квазаров, делаются предположения о возможных селекционных эффектах, возникающих при использовании этих методов. Приводится обоснование выбора среднеполосной фотометрии для изучения эволюции активных ядер галактик.

Вторая глава посвящена модернизации 1-м телескопа Шмидта БАО НАН и проведению среднеполосного фотометрического обзора в поле HS47.5-22. Телескоп входит в пятерку крупнейших телескопов системы Шмидта в мире по размеру зеркала (100/125/213), и в тройку — по размеру объективных призм, и является одним из самых светосильных (F/2.1) среди инструментов своего класса. В фокусе телескопа нами был установлен ССD-детектор (4Kx4K,

с жидкостным охлаждением, RON ~ 11.1e⁻, производитель Apogee, USA) с элементом разрешения 0.868 arcsec/px и полем зрения около 1 квадратного градуса. Детектор оснащен турелью с двадцатью среднеполосными фильтрами (FWHM = 250 Å), равномерно покрывающими спектральный диапазон 4000 – 9000 ÅÅ, и пятью широкополосными фильтрами (u, g, r, i, z SDSS). Для наблюдений нами было выбрано поле HS47.5-22. По наблюдениям на рентгеновском спутнике ROSAT [26] в нём обнаружено 144 рентгеновских источников до уровня $3.5 \cdot 10^{-14}$ эрг \cdot см⁻²с⁻¹ [26], а по результатам обзора FIRST в поле обнаружено 362 радиоисточника [27], [28]. Центральная часть поля была покрыта четырьмя наборами экспозиций в широкополосных и среднеполосных фильтрах. Наблюдения проводились на протяжении нескольких сетов в 2017 -2018 годах. Суммарное время экспозиции подбиралось таким образом, чтобы достичь глубины $m_{AB} \approx 25^m$ с соотношением сигнал-шум 5 в широкополосных (около 2 часов) и $m_{AB} \approx 23^m$ с соотношением сигнал-шум 3 в среднеполосных фильтрах (около 40 мин в пике кривой чувствительности детектора и около 2 часов на краях диапазона). Полученные снимки обрабатывались авторским пакетом программ на языке IDL. По данным USNO-В [29] создавалась астрометрическая структура, с помощью которой пересчитывались положения объектов в R.А. и DEC. Для фотометрии использовалась программа SExtractor [30] в варианте суммы снимков с весовыми коэффициентами, которые рассчитывались по методике, предложенной в Gawiser et al., 2005 [31]. Общее число объектов поля HS47.5-22 до $R_{AB} \approx 24.5^m$ составляет около 85000. Полная выборка объектов поля (28564 объекта) ограничена предельной звездной величиной $R_{AB} \approx 22.5^m$, до которой получены снимки в среднеполосных фильтрах с отношением сигнал/шум $\sim 5 - 10$.

Третья глава посвящена методике отбора квазаров и изучению влияния селекционных эффектов. Для начала проводится покоординатное отождествление объектов с другими обзорами, исследуются морфологические и фотометрические характеристики известных квазаров. Излагается концепция отделения необычных объектов от последовательности звёзд при помощи критерия плотности ближайших соседей в многомерном пространстве широкополосных фильтров. Рассматриваются комбинации критерия плотности ближайших соседей с различными цветовыми критериями для выделения квазаров. Изучаются возможности использования данных о собственных движениях звёзд из обзора Gaia для отделения квазаров от звёзд. Описывается финальный этап визуального отбора квазаров по среднеполосным спектральным распределениям энергии, а также методика определения среднеполосных фотометрических красных смещений и создание итогового каталога квазаров. Проводится моделирование полноты отбора квазаров в данной методике. Моделирование показало, что при больших красных смещениях (z > 2,2) вероятность обнаружения линий оценивается в 80% и выше для объектов ярче $AB = 22,5^m$. В свою очередь, на красных смещениях 1 < z < 2,2 полнота отбора более 90% достигается применением широкополосных критериев u-g < 0.6 и w1-w2 > 0.4. Представляется созданный каталог из 682 квазаров.

Четвертая глава посвящена построению функции светимости квазаров по данным созданного каталога. Описывается методика определения абсолютных звёздных величин и учёта геометрии пространства. Для построения функции пространственной плотности и функции светимости квазаров использовались фотометрические красные смещения. Была учтена геометрия сопутствующего объема и рассчитаны абсолютные звездные величины квазаров на длине волны 145 nm. Для вычисления абсолютных звездных величин брались данные фотометрии в фильтре i_{SDSS} , рассчитывалась К-поправка [32] и проводился пересчёт на $\lambda = 145$ nm по шаблонному спектру квазара с наклоном континуума $\alpha = -0.75$, также учитывалось межгалактическое поглощение согласно модели Мадау [33]. Была проведена коррекция за неполноту выборки согласно построенной модели. Приводится сравнение полученной пространственной плотности и функции светимости квазаров с данными обзоров SDSS, COMBO-17, COSMOS, ALHAMBRA.

В заключении приведены основные результаты работы.

В **приложении** приводится созданный каталог квазаров с данными о координатах, красных смещениях и звездной величине в фильтре r_{SDSS} .

Глава 1. Методы создания репрезентативных выборок квазаров

Результаты, таблицы и рисунки, представленные в данной главе, опубликованы в работах диссертанта [3, 4, 6], составивших основу текста главы. Личный вклад в данные работы отмечен во введении к диссертации.

1.1 Введение

Поиск и изучение свойств AGN является нетривиальной задачей. Связано это с малочисленностью объектов (порядка 300 объектов на 1 кв. градус до R = 22.5), большим разнообразием спектров и большим диапазоном наблюдаемых красных смещений. Методы поиска AGN можно условно разделить по длинам волн: поиск в рентгеновском диапазоне, оптическом (используюя также инфракрасные и ультрафиолетовые данные) и радио диапазоне. Здесь следует отметить, что не все AGN детектируются в рентгеновском и радио диапазонах. Среди оптических методов исторически наиболее успешными являются широкополосная фотометрия [34] и бесщелевая спектроскопия (Маркаряновские обзоры, [35]). Широкополосная фотометрия используется в обзорных работах для отбора QSO по UV-избытку [36] и позволяет эффективно отбирать объекты на красных смещениях менее 2.2, на больших красных смещениях квазары становятся неотличимы по цветовым избыткам от звёзд. Переход от цветовых избытков к бесщелевой спектроскопии существенно расширил наше понимание природы галактик и квазаров. Бесщелевая спектроскопия с применением объективной призмы, гризмы или грензы – эффективная методика получения информации о большом количестве объектов с низким спектральным разрешением. Однако значимы и ограничения метода: при бесщелевой спектроскопии изображение объекта растягивается в спектр над фоном неба, что приводит к снижению отношения сигнал/шум, а спектральное разрешение определяется монохроматическим изображением объекта. Результаты наблюдений бесщелевой спектроскопии отягощены проблемами наложений порядков, переменной

комой по полю зрения, а полезный спектральный диапазон для объективных призм, гризм и гренз ограничен (около 2500 Å).

Дальнейшим развитием оптических методов отбора активных ядер стало комбинирование широкополосной фотометрии с данными ИК и УФ телескопов, а также последующее подтверждение природы отобранных объектов и определение их красных смещений с помощью мультиобъектной спектроскопии. Данная методика успешно реализована в SDSS ([37; 38]). С её помощью полнота выборок квазаров на красных смещениях меньше 2.2 достигла почти 80%. Она также позволила находить квазары на больших красных смещениях (Z > 2.2), но при этом результаты поиска оказались малопригодными для статистических исследований: большинство квазаров по-прежнему оставались неотличимы от звёзд по цветовым избыткам и полнота выборок квазаров не превышала 30%, несмотря на дополнение широкополосными данными ИК и УФ [39].

Развитием фотометрических методов поиска стало увеличение числа фильтров при уменьшении их ширины [40]. Хиксон и Чен [41; 42] были первыми, кто использовал среднеполосные фильтры, покрывающие большой спектральный диапазон, и полученные фотометрические данные рассматривали как низкодисперсионный спектр каждого наблюдаемого объекта. Данный метод в настоящее время является единственным, позволяющим получать глубокие спектрофотометрические данные для сотен тысяч объектов за несколько наблюдательных ночей на телескопах метрового класса. Разные варианты этого метода применялись в обзорах BATC [43], CADIS [44], COMBO-17 [22], MUSYC [45], ALHAMBRA [23], COSMOS [25].

1.2 Современные оптические обзоры: методы наблюдений, алгоритмы отбора квазаров, селекционные эффекты

На текущий момент существует всего лишь несколько обзоров достаточной глубины, которые позволяют решать статистические задачи изучения физических свойств активных ядер галактик и крупномасштабного распределения активных ядер галактик на больших красных смещениях: COMBO-17 (Classifying Objects by Medium-Band Observations, a spectrophotometric 17-filter survey, суммарная площадь ~ 0.78 \square° [46]), ALHAMBRA (Advanced Large, Homogenous Area Medium Band Redshift Astronomical Survey, суммарная площадь ~ 2.79 \square° [47]), COSMOS (Cosmic Evolution Survey, суммарная площадь ~ 2.0 \square° [48]), miniJPASS [49](набор данных, подобных тем, что планируется получить в ходе обзора J-PAS, для изучения научных возможностей обзора, суммарная площадь ~ 1.0 \square° (The Javalambre-Physics of the Accelerating Universe Astrophysical Survey [50; 51])). Помимо этого, существуют менее глубокие широкополосные обзоры больших полей, например SDSS [37; 38; 52]. Все вышеперечисленные обзоры имеют свои сильные и слабые стороны для решения задачи изучения эволюции активных ядер.

1.2.1 Отбор по широкополосным цветам в SDSS, выборка SDSS-DR14Q

На базе широкополосной фотометрии SDSS уже не первое десятилетие разрабатываются методики отбора активных ядер [37; 38; 52]. Одной из последних реализаций стал каталог квазаров SDSS DR14Q [53], состоящий из 899098 объектов в поле размером 9376 квадратных градусов. Активные ядра отбирались в два этапа. На первом создавался каталог кандидатов в квазары, на втором их природа подтверждалась мультиобъектной спектроскопией. Основным методом отбора кандидатов была классификация объектов по методике Bovy et al. 2012 [54] по данным оптической фотометрии SDSS и инфракрасной фотометрии WISE, выборка получила название «ядро» (CORE). Кроме этого, кандидаты для спектроскопии отбирались из внешних источников: оптические отождествления каталога радиоисточников FIRST [55], каталога рентгеновских источников SPIDERS на базе обзора ROSAT [56], а также каталога переменных источников TDSS [57].

Из-за большого количества кандидатов их классификация по спектрам осуществлялась автоматически методом максимального правдоподобия. Темплэйт-спектры создавались на основе тестовой выборки обзора «SEQUELS», состоящей из 36 489 объектов, отобранных вручную [58]. Из них 2393 не удалось автоматически распознать, 18 799 классифицированы как квазары, 10 001 как звёзды, 5288 как галактики. При этом 98 объектов были ошибочно классифицированы как активные ядра (0.5%), и 158 квазаров было потеряно (0.8%)). Оценок итоговой полноты выборки SDSS DR14Q авторами не приводится.

Основные селекционные эффекты при таком подходе возникают на первом шаге. Отбор в ядро выборки, несмотря на однородность по всему полю, проводился по данным широкополосной фотометрии. Обучение алгоритма осуществлялось по выборке спектроскопически подтверждённых квазаров SDSS DR7, также полученной широкополосной фотометрией ([52; 59]). Поскольку глубина широкополосной фотометрии SDSS не превышает $g_{dered} < 22.5$, спектральные распределения энергии объектов на слабых величинах из-за больших ошибок фотометрии не позволяют надёжно выделить последовательность звёзд в цветовом пространстве и отобрать в кандидаты в квазары объекты, слабо отличающиеся по цветам от звёзд (рис. 1.1). Также малая глубина фотометрических данных не позволяет проводить надёжную морфологическую классификацию объектов и исключать из выборки кандидатов в квазары компактные галактики. В свою очередь, по широкополосным цветовым критериям отделить от галактик можно лишь небольшую часть квазаров, поскольку галактики покрывают в цветовом пространстве обширную область, по большей части совпадающую с областью, занимаемую квазарами на красных смещениях 2.5 < z < 4. За счёт этого такой подход не позволяет надёжно отличать квазары от звёзд и галактик, и приводит к существенным потерям объектов [39]. Дополнение выборки кандидатами в квазары из рентгеновских и радиообзоров не решают эту проблему, поскольку лишь небольшая часть активных ядер активно излучают в радиодиапазоне [60], а малая чувствительность в рентгеновском диапазоне не позволяет регистрировать квазары со слабой светимостью.

Рисунок 1.1 — Зависимость количества отобранных активных ядер от их звёздной величины в фильтре R в обзоре SDSS, [53]

1.2.2 Отбор квазаров по переменности в SDSS, выборка QSO_VAR_S82

Обзор SDSS проводился на 2.5-м телескопе обсерватории Апачи-Пойнт. В течении 10 лет было проведено несколько десятков фотометрических наблюдений площадки stripe_82 размером 94.5 квадратных градусов [61]. Это позволило выделить переменные объекты поля, и по характеру переменности отобрать квазары. Итоговая выборка QSO_VAR_S82 состоит из 16 243 объектов. Заявленная глубина выборки $g_{dered} < 22.5$ (рис. 1.3). Авторы оценивают полноту выборки в 70% - 90% [61].

Несмотря на идею отказаться от цветовых критериев как от зависящего от красного смещения параметра, мягкий отбор по цветам всё равно проводился. Критерии брались из работы Фэна и др. [62] и задавались следующим образом:

c3 < 1 - 0.33 * c1, где

$$c1 = 0.95(u - g) + 0.31(g - r) + 0.11(r - i),$$

$$c3 = -0.39(u - g) + 0.79(g - r) + 0.47(r - i).$$

Проводился отбор по морфологическому признаку, в качестве критерия использовалась разница звёздных величин, полученных фиттированием PSFпрофилем и величин, полученных фиттированием модельным профилем (экспонентой или де Вакулёровским):

 $m_{diff} < 0.1,$ где

 $m_{diff} = m_{PSF}(g) - m_{model}(g)$

Основной этап отбора заключался в использовании двух наборов параметров:

- Аппроксимация кривой блеска константой m_{const} методом максимального правдоподобия для каждого фильтра: $\chi^2 = \sum_i [(m_i m_{const})/\sigma_i]^2$. Таким образом отделялись переменные объекты от не переменных.
- Функция переменности (суммарно по трём фильтрам g, r, i) как критерий для классификации объектов: $V(\Delta t_{ij}) = |\Delta m_{i,j}| - \sqrt{\sigma_i^2 + \sigma_j^2}$, где индексы i и j обозначают разные эпохи наблюдений, Δt_{ij} - интервал времени между эпохами, $\Delta m_{i,j}$ - изменение блеска, σ - ошибки фотометрии [63]. Функция переменности аппроксимируется степенным законом $V(\Delta t_{ij}) = A * \Delta T_{i,j}^{\gamma}$, где A - амплитуда, γ - показатель степени. По этим двум параметрам проводилось разделение объектов на активные ядра и переменные звёзды (рис. 1.2).

При рассмотрении селекционных эффектов стоит отметить тот факт, что на красном смещении z все процессы для наблюдателя происходят в z + 1 раз медленнее, нежели в системе покоя. Соответственно, при прочих равных условиях в z + 1 раз увеличиваются характерные времена переменности квазаров. За счёт этого вероятны потери далёких долгопериодичных объектов при использовании переменности как главного критерия. Также отметим малую глубину обзора, приводящую к потере слабых объектов на z > 2 (рис. 1.3).

Рисунок 1.2 — Параметры A и γ для квазаров и переменных звёзд [64]

Рисунок 1.3 — Распределение квазаров QSO_VAR_S82 по красному смещению и звёздным величинам [61]

1.2.3 Обзор СОМВО-17

Обзор СОМВО-17 ([22]) проводился на 2.2-м телескопе обсерватории Ла-Силья, Чили. В нем использовались 5 широкополосных UBVRI-фильтров и 12 среднеполосных фильтров шириной от 140Å до 270Å (рис. 1.4). При этом среднеполосные фильтры расположены по длинам волн со значительными промежутками. Всего наблюдалось 3 площадки общей площадью 0.78 квадратных градуса. Выборка объектов ограничена диапазоном звездных величин 17 < R < 24. Всего было отобрано 192 объекта.

Отбор кандидатов в квазары проводился по темплэйт-спектрам, созданным на основе спектра Фрэнсис и др. [65]. Показатель степени нетеплового континуума варьировался от -1.66 и до +0.4. Переменность объектов между периодами наблюдений учитывалась с использованием фотометрии в фильтре R, однако не использовалась для отбора объектов-кандидатов в квазары. Мор-

20

фологического отбора (селекции звезда-галактика) не проводилось. Кроме того, для более уверенного разделения не использовались template-спектры с подстилающей галактикой, и потому в выборку не включены квазары на z < 1.2 [22].

Рисунок 1.4 — Кривые пропускания фильтров, используемых в обзоре СОМВО-17 [22]

Для проверки полноты полученной выборки квазаров проводилось моделирование на базе template-спектров, по которым проводился отбор (рис. 1.5). Независимое сравнение с выборкой CDFS показало, что было отобрано 8 квазаров из 12 известных, несмотря на прогноз моделирования 10 из 12 [22]. Сами авторы обзора оценивают полноту выборки квазаров как $\geq 90\%$ до $R \leq 23$.

Рисунок 1.5 — Карта полноты отбора и определения красного смещения по результатам моделирования в обзоре COMBO-17 [22]. Горизонтальная ось величина в фильтре R, вертикальная ось - красное смещение. Полнота показана градациями серого от 0% (светло-серый) до 120% (чёрный). Белой и черной линией выделены уровни полноты 90% и 50%, соответственно Основные проблемы обзора связаны с большими промежутками между среднеполосными фильтрами - характерные широкие эмиссионные линии в спектрах квазаров попадают между фильтрами и не регистрируются, что ухудшает классификацию. Также возникают трудности с определением фотометрических красных смещений при приближении линий к краю полосы пропускания фильтров. Такая система фильтров ориентирована на детектирование континуальных объектов, а именно галактик на больших красных смещениях. Именно для этой задачи и планировался обзор СОМВО-17.

1.2.4 Обзор ALHAMBRA

Обзор ALHAMBRA ([23]) проводился на 3.5-м телескопе обсерватории Калар-Альто. Использовался набор из 20 среднеполосных фильтров в интервале длин волн 3500 – 9700 Å, а также три стандартных широкополосных инфракрасных фильтра J, H и K [23] (рис. 1.6). Наблюдались 8 площадок размером от 0.19 до 0.50 квадратных градуса, общей площадью 2.38 квадратных градуса. Глубина выборки ограничена величиной в среднеполосном фильтре с центральной длиной волны 675 нм: $M_{678} < 23.5$, что приблизительно соответствует $r_{SDSS} < 24$ [23]. Всего было отобрано 1079 объектов, 585 по двум эмиссионным линиям и 494 по трём и более эмиссионным линиям. Полнота выборок оценивается авторами, соответственно, в 73% и 67% на z < 2 и в 85% и 77% на z > 2 [24].

Отбор проводился в два этапа. Первый – разделение по темплэйтам на звёзды и «внегалактику» с использованием пакета LePhare [66]. При этом для «внегалактики» используются только темплэйты квазаров с достаточно яркими для регистрации в среднеполосных фильтрах эмиссионными линиями. Второй этап – отделение квазаров от галактик по широким эмиссионным линиям с использованием кода ELDAR [24].

Существенные потери объектов могли возникнуть на первом этапе отбора, поскольку для отождествления квазаров использовались 6 template-спектров (рис. 1.7), представляющие исключительно классические квазары первого типа с яркими широкими эмиссионными линиями, и 6 template-спектров с раз-

Рисунок 1.6 — Кривые пропускания фильтров, используемых в обзоре ALHAMBRA, [23]

личным соотношением яркости активного ядра и подстилающей галактики с активным звездообразованием [24]. Поскольку всё разнообразие спектральных распределений энергии квазаров не покрывается моделью степенного континуума с одинаковым набором эмиссионных линий, вероятны большие потери кандидатов в квазары со спектрами, отличающимися от модельного. Потери на втором шаге могут возникнуть на больших красных смещениях ($z \sim 4$), когда большинство эмиссионных линий выходит за пределы диапазона, покрываемого среднеполосными фильтрами, и с необходимым соотношением сигнал-шум можно выделить только линию L_{α} . Поскольку алгоритм ELDAR отбирает объекты с двумя и более эмиссионными линиями, многие объекты могут быть ошибочно исключены из выборки.

1.2.5 Обзор COSMOS

Фотометрические наблюдения в обзоре COSMOS проводились на 8.3-м телескопе Субару, 4-м телескопах КРNO и СТIO, а также 3.6-м телескопе СFHT [67], для морфологической классификации объектов используются снимки с телескопа HST [25]. Используемые фотометрические данные - это широкополосный, среднеполосный и узкополосный фотометрические каталоги, всего 29 фильтров в диапазоне 0.1 – 8.0µ [25] (рис. 1.8). Наблюдалось единое поле площадью 1.64 квадратных градуса. Выборка ограничена диапазоном звездных

Рисунок 1.7 — Тетрlate-спектры, используемые на первом шаге отбора в ALHAMBRA, [24]

величин 16 < I < 25. Также для существенного числа объектов проводилась спектроскопия на телескопах Кека и VLT. Несмотря на период наблюдений в несколько лет, переменность объектов при построении SED не учитывалась. Всего было отобрано 155 квазаров на z > 3.1 [25].

Квазары отбирались в два этапа. На первом проводился автоматический отбор по следующим критериям:

- 1. звездообразные объекты в фильтре I по данным HST (ACS каталог [68]);
- 2. отбор по спектральным распределениям энергии методом фиттирования модельных спектров квазаров и звёзд, и оценка вероятности при-

Рисунок 1.8 — Пример спектрального распределения энергии объекта по фотометрическим данным в 29 фильтрах COSMOS, и соответствующий этому распределению template-спектр, [25]

надлежности объекта к тому или иному классу методом максимального правдоподобия; объект классифицировался как квазар по соотношению $\chi^2_{qso}/\chi^2_{star} \leq 2.0, [25];$

- 3. соотношение яркости в фильтре U с инфракрасными данными Spitzer, channel 1 (3.6 μ) и channel 2 (4.5 μ): $U ch1 \ge 1.5 \ OR \ U ch2 \ge 1.5 \ OR \ zqso \ge 3.0$; этот критерий обусловлен попаданием в фильтр U поглощенной части спектра квазаров на z > 3, и, соответственно, провалом в этой области;
- 4. $m_{AB}(3.6\mu) \leq 24.0 \ OR \ m_{AB}(4.5\mu) \leq 24.0$; обусловлен наличием у большинства активных ядер яркого инфракрасного континуума.

На втором этапе проводился финальный отбор объектов вручную по спектральным распределениям энергий [25].

Для симуляции отбора объектов и оценки полноты выборки создавались template-спектры на базе библиотеки SWIRE [69], построенной на основе оптических спектров SDSS и инфракрасной фотометрии Spitzer [70]. Для описания всего разнообразия активных ядер брались три темплейта с разным инфракрасным континуумом [69], к которым добавлялся ультрафиолетовый континуум с разным наклоном [71]. Также варьировался наклон континуума в оптике [72]. Итоговая библиотека состояла из 100 template-спектров. Симуляция фотометрии проводилась в диапазоне красных смещений $3 \leq z \leq 5$ с шагом dz = 0.1 и звёздных величин $20 \geq I \geq 26$ с шагом dI = 0.1, учитывалось межгалактическое поглощение с использованием модели Мадау [33], добавлялись пуассоновские и фоновые шумы. Полнота выборки по результатам симуляции составила > 90% до I < 23.8 в диапазоне красных смещений $3.1 \lesssim z \lesssim 3.3$, и $\sim 100\%$

на больших красных смещениях. В диапазоне звёздных величин 23.8 < *I* < 25 полнота выборки ухудшается за счёт критерия №4 [25].

Среди возможных источников эффектов селекции стоит выделить отбор по морфологическому признаку (критерий №2). При FWHM = 0.12"морфологический критерий является слишком жёстким, и может исключать из выборки активные ядра с яркой подстилающей галактикой ($M_{1450} \ge -23$) (рис.1.9). В работе Masters et al. 2012 [25] указано, что из каталога рентгеновских источников Civano et al. 2011 [73] отобрано 27 точечных объектов, 74 объекта при этом было отброшено по морфологическому признаку, либо по критерию $I \ge 25$. Спектроскопия 12 протяжённых объектов показала, что все они являются поглощёнными активными ядрами второго типа без выраженных эмиссионных линий, однако не указано, как выбирались объекты для спектроскопии.

Рисунок 1.9 — Морфологическая классификация объектов в COSMOS, [68]

1.3 Выбор методики наблюдений

При средней поверхностной плотности AGN порядка 200 – 300 объектов на квадратный градус до $R = 23^m$, задача построения значимой выборки объектов в несколько тысяч объектов предполагает наблюдения нескольких десятков квадратных градусов. AGN излучают во всех наблюдаемых диапазонах длин

волн, и методы их поиска можно условно разделить по длинам волн на рентгеновские, оптические (+ ИК и УФ) и радио. Обычно поиск AGN в оптическом диапазоне основывается на щелевой спектроскопии объектов-кандидатов в AGN, выделенных по цветовым характеристикам (SDSS, Richards et al. 2002) [52] (рис. 1.10), 2dF, Croom et al. 2004 [74]) или по данным бесщелевых обзоров (Маркарян, 1967 [35]; Crampton, Cowley & Hartwick 1989 [75]. Обзоры, основанные на прямых снимках неба в широкополосных фильтрах, дают информацию о морфологии и распределении энергии в спектрах всех объектов поля зрения телескопа с очень низким спектральным разрешением. Широкополосная фотометрия использовалась в обзорных работах для отбора QSO по UV-избытку (Boyle, et al., 1990) [36] для отбора определенного типа объектов (Drinkwater, 1988 [76]). Небольшое число фотометрических полос делает метод весьма чувствительным к вариациям наклона в спектральном распределении энергии (SED) у объектов. Информация о морфологии объектов имеет весьма ограниченное применение при классификации объектов на звёзды, галактики и квазары, т.к. сильно зависит от условий наблюдений. Основной проблемой выборок AGN, созданных на основе цветовых критериев, является низкая полнота выборки объектов, также большие трудности возникают при попытках учесть селекционные эффекты.

Дальнейшим развитием оптических методов отбора активных ядер стало комбинирование широкополосной фотометрии с данными ИК телескопов, а также последующее подтверждение природы отобранных объектов и определение их красных смещений с помощью мультиобъектной спектроскопии. Данная методика успешно реализована в SDSS ([37], [38]). С её помощью полнота выборок квазаров до красных смещений меньше 2.2 достигла почти 80%. Она также позволила находить квазары на больших красных смещениях (Z > 2.2), но при этом оказалась малопригодной для статистических исследований: большинство квазаров по-прежнему оставались неотличимы от звёзд по цветовым избыткам и полнота выборок квазаров не превышала 30%, несмотря на дополнение широкополосными данными ИК.

Бесщелевая спектроскопия с применением объективной призмы, гризмы или грензы - эффективная методика получения информации о большом количестве объектов с низким спектральным разрешением. Существенны и ограничения метода: при бесщелевой спектроскопии изображение объекта растягива-

2

3

Рисунок 1.10 — Широкополосные цветовые критерии Richards 2002 [52], рассматриваемые для тестовой выборки поля HS47-22. Красным обозначены квазары, отобранные по среднеполосным распределениям энергии вручную, красными боксами – области отбора квазаров, боксами других цветов – области исключения А-звёзд, М-звёзд и белых карликов. Чёрными точками обозначены все остальные точечные объекты

ется в спектр над фоном неба, что приводит к значимому снижению отношения сигнал/шум, а спектральное разрешение определяется монохроматическим изображением объекта [77]. Результаты наблюдений бесщелевой спектроскопии отягощены проблемами наложений порядков, переменной комой по полю зрения, а полезный спектральный диапазон для объективных призм, гризм и гренз ограничен (около 2500 A). Необходимость массового изучения свойств слабых объектов, недостижимых для бесщелевой спектроскопии, привела к возрож-

28

дению многоцветной фотометрии на новом технологическом уровне. Впервые идея увеличения количества фильтров и использования фотометрических данных для определения красных смещений галактик была предложена и реализована Baum (1962)[40]. Значительно позже эта идея была возрождена Loh & Spillar (1986) [78] и Koo (1986) [79]. Hickson et al. (1994) [41] и Chen et al. (1994) [42] были первыми, кто использовал среднеполосные фильтры, покрывающие большой спектральный диапазон, и полученные фотометрические данные рассматривали как низкодисперсионный спектр каждого наблюдаемого объекта. Для слабых объектов многополосная фотометрия, при прочих равных условиях, сравнима по эффективности (с точки зрения числа одновременно исследуемых объектов) с бесщелевой спектроскопией (Hickson, et al., 1994) [41], однако современные интерференционные фильтры могут быть изготовлены с пропусканием более 90% в широком диапазоне длин волн, в то время как объективная призма, гризма или гренза имеют высокую эффективность только в области угла блеска. После работ Lanzetta et al. (1996) [80], Connolly et al. (1997) [81], Fernandes-Soto et al. (1999) [82] многополосная фотометрия получила всеобщее признание как метод, позволяющий исследовать все объекты, видимые в поле зрения телескопа, и с приемлемой точностью определять их тип, фотометрические красные смещения, делать оценки их физических параметров. Такая методика наблюдений является промежуточной между многоцветной фотометрией и многощелевыми наблюдениями. В дальнейшем разные варианты этого метода применялись в обзорах BATC [43], CADIS [44], COMBO-17 [22], MUSYC [45], ALHAMBRA [23].

1.4 Выводы

Многополосная фотометрия является оптимальным методом для создания репрезентативной выборки квазаров с точки зрения затрат телескопного времени, размера поля зрения телескопа, достижимой глубины обзора и качества классификации объектов. Он включает в себя прямые снимки через относительно большое число среднеполосных фильтров (FWHM = 200 - 300 Å). Фотометрия каждого отдельного изображения даёт точку в спектре каждого объекта, попавшего в поле зрения телескопа. На этом пути низкодисперсионная спектрофотометрия может быть получена для всех объектов в поле зрения телескопа. Поэтому в настоящей работе для создания репрезентативной выборки AGN мы выбрали многополосную фотометрию.

1.5 Результаты главы 1

В данной главе приведен обзор современных оптических обзоров, нацеленных на поиск активных ядер галактик. Рассмотрены сильные и слабые стороны различных методов классификации объектов и создания репрезентативных выборок квазаров. Изучены селекционные эффекты, которые могут оказывать негативное влияние на качество итоговой выборки активных ядер. Приводится обоснование выбора среднеполосной фотометрии для создания полной выборки квазаров в данной работе.

Глава 2. Среднеполосный фотометрический обзор на 1-м телескопе Шмидта

Результаты, таблицы и рисунки, представленные в данной главе, опубликованы в работах диссертанта [1, 2], составивших основу текста главы. Личный вклад в данные работы отмечен во введении к диссертации.

2.1 Наблюдения

2.1.1 Модернизация телескопа

Для наблюдений мы использовали 1-м телескоп системы Шмидта (100/125/213) Бюраканской астрофизической обсерватории Национальной академии наук Армении. Телескоп входит в пятерку крупнейших телескопов системы Шмидта в мире по размеру зеркала, и в тройку — по размеру объективных призм, и является одним из самых светосильных (F/2.1) среди инструментов своего класса. Телескоп создан Государственным оптикомеханическим заводом им. ОГПУ (в настоящее время ЛОМО) и установлен в Бюраканской обсерватории в 1960 г. В середине 60-х годов на этом телескопе Б. Е. Маркарян впервые начал программу поиска внегалактических объектов с избыточным УФ-излучением в континууме [35], применив методику бесщелевой спектроскопии. В ходе обзора было открыто большое количество новых активных ядер галактик, известных в настоящее время как галактики Маркаряна и до сих пор являющихся предметом многосторонних исследований. Еще до завершения программы Первого Бюраканского обзора Б. Е. Маркаряном была сформулирована задача, имевшая целью распространение низкодисперсионных спектральных исследований на более слабые звездные величины и расширение круга отбираемых объектов. Эта идея легла в основу Второго Бюраканского спектрального обзора неба. Наблюдения по программе обзора были начаты в 1974 г. и завершены в 1991 г. [83]. По окончании Второго Бюраканского обзора неба систематические

наблюдения на телескопе не проводились, и в середине 90-х годов он был законсервирован. В 2006 г. была начата работа по расконсервации телескопа и восстановлению его работоспособности. Нами полностью модернизирована система управления телескопом: заменены исполнительные механизмы, разработано математическое обеспечение управления телескопом, создана гидирующая система, переработан и подготовлен к установке в фокусе телескопа ССD-детектор. Созданная система позволяет управлять детектором, фильтровыми колесами, перемещениями телескопа и купола, автоматически фокусировать телескоп.

Для установки на телескоп нами была приобретена любительская СССкамера Ародее Alta 16M (производства Ародее USA) с охлаждением детектора двухкаскадным Пельтье модулем и воздушным охлаждением горячего спая Пельтье модуля. В камере установлен СССС-детектор Kodak KAF-16803 4096 х 4096 элементов, с размером элемента 9 х 9 мкм. Лабораторные исследования камеры показали, что шум считывания равен $r.n. = 11.1^e$, коэффициент преобразования равен $ADU = 1.487^e$ и камера имеет достаточный для наблюдений диапазон линейности. Спектральная чувствительность камеры позволяет работать практически во всём оптическом диапазоне; измерения спектральной чувствительности, сделанные нами в лаборатории, приведены на рис. 2.1.

Рисунок 2.1 — Спектральная чувствительность камеры Apogee Alta 16М по результатам измерений в лаборатории

Мы переработали камеру, заменив воздушное охлаждение жидкостным и вакуумировали объем, в котором находится детектор. Это позволило в значительной степени уменьшить зависимость температуры детектора и электроники от температуры окружающей среды и довести рабочую температуру на детекторе до -40°C ± 0.1 °C при температуре теплоносителя +10°C ± 0.1 °C. Перед стеклянным окном объема, в котором находится детектор, был установлен полеспрямляющий двухлинзовый объектив с антирефлексным покрытием, специально рассчитанный для исправления кривизны фокальной поверхности 1-м телескопа во всём оптическом диапазоне. На корпусе камеры была установлена фильтровая турель со сменными фильтровыми колесами (HSFW, производства Optec USA), в каждом из которых устанавливаются 5 фильтров диаметром 50 мм. В октябре 2015 года на штатный фокусировочный узел телескопа мы установили CCD камеру и проложили линии подачи теплоносителя от системы охлаждения (Minichiller производства фирмы Huber, Германия) установленной в подкупольном пространстве телескопа. В качестве теплоносителя использовалась смесь этилового спирта с дистиллированной водой. В результате, мы получили поле зрения телескопа с камерой Alta 16M около 1 кв. градуса, с элементом разрешения 0.868 arcsec. Было проведено исследование фотометрической стабильности детектора в условиях реальных наблюдений: в течение двух недель измерялись значения базового уровня, относительно которого проводятся измерения яркости объектов (bias-overscan); изменение температуры подкупольного пространства при измерениях было от -18°C до +2°C, рис. 2.2. Как показали измерения, среднеквадратичные уклонения изменений базового уровня не превосходят 1.4 е, т.е. 1 ADU детектора, без заметных трендов.

Детектор был оснащен турелью с двадцатью среднеполосными фильтрами (FWHM = 250 Å), равномерно покрывающими спектральный диапазон 4000 - 9000 Å, и пятью широкополосными фильтрами (u, g, r, i, z SDSS) 1. На рис. 2.3 приведены кривые пропускания фильтров, измеренные в сходящемся пучке F/2.1, соответствующем светосиле телескопа [84].

Для наблюдений нами было выбрано поле HS47.5-22, – одно из полей с глубоким накоплением рентгеновского спутника ROSAT [26]. Центральная часть поля с координатами центра $09^{h}50^{m}00^{s} + 47^{d}35^{m}00^{s}$ размером 2.4 кв. градуса была покрыта четырьмя наборами экспозиций в широкополосных и среднеполосных фильтрах (рис. 2.4). Перекрытия соседних наборов составляли около

34

Таблица 1 — Набор широкополосных и среднеполосных фильтров 1-м телескопа Шмидта БАО НАН. Эффективная длина волны, FWHM, предельная звездная величина, измеренная на уровне сигнал/шум ~ 5.

Фильтр	$\lambda_{ m cen},{ m \AA}$	FWHM, Å	$m_{\mathrm{lim},5\sigma}$
u SDSS	3578	338	24.23
g SDSS	4797	860	25.22
r SDSS	6227	770	24.97
i SDSS	7624	857	24.15
mb 400	3978	250	24.37
mb 425	4246	250	24.31
mb 450	4492	250	24.20
mb 475	4745	250	24.31
mb 500 $$	4978	250	24.30
mb 525	5234	250	24.37
mb 550	5496	250	23.86
mb 575	5746	250	24.29
mb 600	5959	250	23.89
mb 625	6234	250	23.51
mb 650	6499	250	23.41
mb 675	6745	250	23.78
mb 700	7002	250	23.47
mb 725	7253	250	23.20
mb 750	7519	250	23.07
mb 775	7758	250	22.97

Рисунок 2.2 — Измерения базового уровня bias-overscan в реальных условиях на телескопе. Температура подкупольного пространства менялась от -18°C до +2°C. Пунктирной линией показан средний уровень, штрихпунктирными показано ±0.5 ADU

10 угловых минут. По наблюдениям на рентгеновском спутнике ROSAT в нём обнаружено 144 рентгеновских источников до уровня $3.5 \cdot 10^{-14}$ эрг · см⁻²с⁻¹ [26]. По результатам обзора FIRST в поле обнаружено 362 радиоисточника [27], [28].

Наблюдения проводились на протяжении нескольких сетов в феврале, марте, апреле и ноябре 2017 года, а также в феврале и ноябре 2018 года в четырех широкополосных фильтрах системы SDSS (u, g, r, i) и 16 среднеполосных фильтрах, равномерно покрывающих спектральный диапазон 4000 – 8000 Å. Суммарное время экспозиции подбиралось таким образом, чтобы достичь глубины $m_{AB} \approx 25^m$ с соотношением сигнал-шум 5 в широкополосных фильтрах (около 2 часов) и глубины $m_{AB} \approx 23^m$ с соотношением сигнал-шум 5 в среднеполосных фильтрах (около 40 мин в пике кривой чувствительности детектора и около 2 часов на краях диапазона).

Рисунок 2.3 — Набор фильтров 1-м телескопа Шмидта. Пропускание фильтров измерено в сходящемся пучке со светосилой F/2. Кривые пропускания фильтров приведены с учётом чувствительности детектора

2.2 Обработка наблюдательных данных

Процедура обработки результатов фотометрических наблюдений разделяется на несколько последовательных шагов: предварительная редукция данных; оценка качества полученных данных и отбор данных, пригодных для дальнейшей работы; совмещение и сложение снимков, полученных в каждом фильтре; совмещение и приведение к единой системе координат снимков, полученных в разных фильтрах; оценка качества полученного набора снимков и оценка шумовых характеристик изображений, полученных в разных фильтрах; создание из снимков хорошего качества опорного изображения для детектирования объектов; фотометрия объектов с использованием SExtractor [30]; классификация объектов и определение фотометрических красных смещений.

Рисунок 2.4 — Карта поля HS47-22, полученная на 1-м телескопе Шмидта БАО. $RA = 09^h 50^m 00^s$, $DEC = +47^d 35^m 00^s$. Мозаика из 4 х 1 кв. градусов с перекрытиями 10 угл. минут. Итоговый размер 2.38 кв. градуса. 16 среднеполосных фильтров с FWHM = 250 Å, 4 широкополосных фильтра SDSS. Однородное покрытие спектрального диапазона 4000 – 8000 Å, $S/N \approx 5$ для $AB = 23^m$ во всех среднеполосных фильтрах. 144 объектов ROSAT до $3.5 * 10^{-14} erg * cm^{-2} * c^{-1}$, 362 объектов FIRST, 209 квазаров SDSS

2.2.1 Первичная редукция изображений

Мы рассмотрим ключевые моменты редукции наблюдательных данных, опуская описание стандартных и хорошо описанных в литературе [45; 47; 85; 86] шагов редукции данных, таких как подготовка и вычитание среднего уровня "электронного ноля", подготовка вычитание среднего уровня темнового тока, коррекция за плоское поле, учет вклада фринговой составляющей в красных диапазонах, чистка космических частиц, оценка качества изображений и т.д.. После предварительной редукции данных все снимки для данного фильтра приводятся к единой системе координат, делаются оценки качества изображений, снимки с плохим качеством изображений отбрасываются, после чего производится сложение снимков с приведением к экспозии 1 секунда.

2.2.2 Астрометрия

Суммарные снимки поля в разных фильтрах приводятся к единой системе координат, а по данным USNO-B [29] создается астрометрическая структура, с помощью которой можно пересчитать положения объектов в поле зрения телескопа в R.A. и DEC. Точность астрометрии, достигаемая для объектов исследуемого поля, не хуже 0.2 arcsec (0.1-0.2 канала) (рис. 2.5).

Рисунок 2.5 — Точность астрометрии для объектов поля HS47-22

Детектирование объектов.

Возможны несколько стратегий использования SExtractor [30] для детектирования и фотометрии объектов. Встроенная в программу возможность детектирования объектов на одном изображении и фотометрии на другом - наиболее подходящая схема для фотометрии объектов на снимках, сделанных во многих фильтрах. Важным моментом в этом случае является создание базового изображения, такого, чтобы не потерять объекты с необычными цветовыми характеристиками или объекты с отношением сигнал/шум, близким к пределу обнаружения. Здесь применяются разнообразные подходы: в качестве базового изображения для детектирования объектов используют наиболее глубокий снимок в красном (чтобы не потерять слабые галактики) диапазоне спектра (Wolf et al., 2004 [46]); сумму двух или более снимков (как это было сделано для поля HDF, Williams et. al., 1996) [87]; сумму снимков с наилучшим качеством изображений с весовыми коэффициентами, рассчитанными исходя из шумовых характеристик снимков (Gawiser et al., 2005 [31]; χ^2 -изображения, предложенные для оптимального детектирования слабых объектов на снимках HDF (Szalay et al., 1999 [88]). Мы использовали вариант суммы снимков с весовыми коэффициентами, так как в этом случае мы можем использовать базовый снимок не только для детектирования объектов, но и для измерения их морфологических параметров. Весовые коэффициенты рассчитывались по методике, предложенной в Gawiser et al., 2005 [31]. Детектирование объектов производилось в SExtractor после фильтрации с гауссовским ядром, соответствующим качеству изображений на базовом снимке. Уровень детектирования и анализа определялся так, чтобы число "случайных" объектов на "негативном" базовом снимке не превышало 1 – 2% от числа обнаруживаемых на базовом снимке объектов. Здесь мы использовали тот факт, что разброс шумовых отсчетов фона неба симметричен и позволяет сделать грубую оценку числа ложных объектов, обнаруживаемых SExtractor.

2.2.3 Фотометрия объектов.

Ключевой вопрос фотометрических наблюдений - калибровка каждого диапазона. При фотометрических условиях это может быть сделано с помощью наблюдений звезд спектрофотометрических стандартов. Это относительно просто для узких полос, т.к. цветовые коэффициенты близки к 0. Важно иметь хорошую калибровку, т.к. ошибки в отдельных диапазонах могут иммитировать спектральные детали. Большие проблемы возникают при наблюдениях в не фотометрических условиях. Возникает проблема возможных вариаций 0-пунктов фильтров. Наилучшее решение в этом случае – иметь спектрофотометрические стандарты в одном поле с исследуемыми объектами. В этом случае вариации 0-пунктов устраняются, так как одинаковое поглощение относится и к стандарту, и к исследуемому объекту. Для калибровки фотометрических данных мы выбрали второй вариант. Фотометрическая калибровка данных произведена с использованием спектроскопических и фотометрических данных из обзора SDSS для объектов в поле HS 47.5-22. Синтетическая фотометрия этих звезд затем была получена сверткой спектров звезд с эффективной кривой пропускания фильтров, полученные значения использовались для расчета 0-пунктов звездных величин в соответствующих фильтрах. Ошибки 0-пунктов звездных величин, определенных таким способом, находятся в пределах $\pm 0.^{m}01$.

Точные распределения энергии в спектре объектов (SED) могут быть построены, только если в каждом фильтре проинтегрированы одни и те же части наблюдаемых объектов. Если не принимать во внимание изменения размера объектов (PSF) от снимка к снимку, то в одинаковых апертурах на разных снимках будут проинтегрированы разные части объектов. Это может привести к ошибкам в цветах объектов до 20% [86]. Общепринятая техника построения SED объектов состоит в приведении всех снимков к единому качеству изображений, наихудшему среди набора снимков [67; 85; 89]. Затем апертуры используются для интегрирования изображений объектов во всех фильтрах. Шумовые характеристики отдельных изображений хорошо описываются дисперсией сигнала, накопленного в каждом канале, поскольку пуассоновский шум сигнала и шум считывания детектора не коррелированы. Однако, обработка изображений (сдвиги, сложения и другие процедуры) вносит корреляцию между соседними

каналами, малые ошибки при вычитании фона ночного неба также могут влиять на шумы. Понимание свойств шумов необходимо, поскольку именно они определяют глубину снимков и ошибки при фотометрии объектов. Прямые измерения зависимости дисперсии отсчетов (rms) от среднего значения фона неба и от линейного размера $N = \sqrt{A}$, где A – площадь апертуры интегрирования, дают более реалистичную оценку шумовых характеристик, чем формальная гауссовская оценка шумов $\sigma(N) = N < \sigma >$. В SExtractor'e оценка ошибок фотометрии делается именно на основе гауссовой оценки шумов, что приводит к существенному занижению ошибок фотометрии. Для оценки реальных шумовых характеристик на изображениях, готовых к фотометрии, в каждом фильтре мы проводим измерения потоков в более 1000 непересекающихся круговых аппертурах, случайно расположенных в областях, свободных от объектов. Размеры апертур меняются от 0.5 до 20 arcsec. Дисперсию сигнала мы оцениваем по гистограммам распределения числа отсчетов для каждого размера апертуры. Дисперсия отсчетов зависит от размера апертуры и растет с увеличением апертуры. По завершении фотометрии объектов полученные таким образом оценки шумов добавляются в квадратурах к ошибкам фотометрии, полученным в SExtractor'е с учетом геометрических размеров объекта.

2.2.4 Составление полного каталога объектов

Выборка объектов поля HS47.5-22 построена на основе глубоких ($m_{AB} \approx 25^m$) снимков в широкополосных фильтрах g_{SDSS} , r_{SDSS} и i_{SDSS} . Каждая из четырёх площадок обрабатывалась отдельно: с использованием своих фотометрических нуль-пунктов, оценкой шумовых характеристик снимков и т.д.. Астрометричекая привязка также проводилась для каждого поля отдельно после выделения и расчета фотометрических характеристик объектов с помощью SExtractor'a. Полученные каталоги объектов объединялись в общий каталог с использованием астрометрических координат, при этом потоки объектов с совпавшими координатами усреднялись. Общее число объектов поля HS47.5-22 до $R_{AB} \approx 24.5^m$ составляет около 85000. Полная выборка объектов поля (28564 объекта) ограничена предельной звездной величиной $R_{AB} \approx 22.5^m$, до которой получены снимки в среднеполосных фильтрах с отношением сигнал/шум $\sim 5-10.$

2.3 Результаты главы 2

В данной главе описывается процесс модернизации 1-м телескопа Шмитда БАО НАН и его подготовки к проведению среднеполосного фотометрического обзора. Даются оценки характеристик модернизированного телескопа: поле зрения, темпераратурная стабильность детектора, достижимая глубина в широкополосных и среднеполосных фильтрах. Приводится обоснование выбора поля для проведения среднеполосного фотометрического обзора, нацеленного на изучение внегалактических объектов. Описывается процедура получения и обработки наблюдательных данных. Проводится оценка точности астрометрии по полученным наблюдательным данным, описывается методика детектирования и фотометрии объектов, а также создания полного каталога объектов в поле обзора.

Глава 3. Методика отбора квазаров

Результаты, таблицы и рисунки, представленные в данной главе, опубликованы в работах диссертанта [3, 4, 6], составивших основу текста главы. Личный вклад в данные работы отмечен во введении к диссертации.

3.1 Концепция методики отбора квазаров

Поскольку существующие методики поиска квазаров и составления репрезентативных выборок подвержены значительным селекционным эффектам, нами было принято решение разработать собственную методику. Изучив эффекты селекции, свойственные различным методикам, мы выделили общую для большинства из них проблему, ухудшающую полноту итоговой выборки: автоматизированный этап отбора нацелен на поиск объектов, имеющих характеристики квазаров. Поскольку разнообразие спектральных характеристик квазаров чрезвычайно велико, описать все возможные вариации шаблонными спектрами либо простыми цветовыми критериями не представляется возможным. Из-за этого возникают потери активных ядер, имеющих нетипичные характеристики.

Мы решили подойти к проблеме с другой стороны: на автоматизированном этапе отбора исключать из выборки объекты, которые имеют хорошо изученные спектральные характеристики звёзд и галактик, и при этом существенно отличаются от известных квазаров. Такая методика на первом этапе даёт сильно загрязненную, но обладающую максимальной полнотой, выборку кандидатов в квазары. При этом она устойчива к выбросам, что позволяет использовать сильно зашумленные данные. Также это позволяет использовать различные критерии отбора квазаров параллельно, задействовав все доступные данные из открытого доступа: оптическую фотометрию, инфракрасную фотометрию, морфологию, астрометрию, данные рентгеновского и радио диапазона.

3.2 Отбор объектов

В самом начале производилась покоординатная идентификация объектов с другими обзорами: мы использовали инфракрасную фотометрию WISE [90], глубокую широкополосную фотометрию и спектральные данные SDSS [53], фотометрию DECaLS [91], данные морфологии из обзора DECaLS и данные параллакса и собственных движений объектов из обзора GAIA [92]. Мы также идентифицировали рентгеновские источники ROSAT [26] и радиоисточники FIRST [55].

Нами была изучена морфология известных квазаров в поле HS47.5-22 по данным DECaLS. По этим данным, 97% известных квазаров являются точечными источниками, остальные 3% классифицируются как протяженные объекты. В то же время морфологическая классификация DECaLS отлично зарекомендовала себя для классификации звезд-галактик до величины $R_{AB} \approx 22.2^m$; при более слабых значениях далекие компактные галактики классифицируются как точечные объекты. Это было использовано как критерий отбора, который практически не влияет на полноту выборки квазаров, при этом позволяя удалять протяженные объекты.

Следующим шагом стала разработка алгоритма автоматического отбора по данным широкополосной и среднеполосной оптической фотометрии. Он основан на идее, что звезды многочисленны и образуют узкую последовательность в цветовом пространстве. С другой стороны, квазары, особенно на z > 2.5, разбросаны в цветовом пространстве гораздо шире, и их количество на порядок меньше. Поэтому мы можем считать для каждого объекта расстояние до ближайших соседей в цветовом пространстве, и через расстояния оценивать плотность окружающих соседей. Для звезд эта плотность будет значительно выше. Кроме того, использование евклидового расстояния до ближайших соседей в цветовом пространстве позволяет эффективно отбирать необычные объекты, лежащие на удалении от области, занимаемой звёздами [93]. Дополнение оптической фотометрии инфракрасными данными позволяет выделять такие объекты ещё более эффективно. В частности, это позволяет отделить подавляющее большинство звёзд при поиске кандидатов в квазары. Однако такой подход хорошо работает для фотометрии с большим соотношением сигнал-шум. При переходе к слабым объектам звёздная последовательность начинает расширяться за счёт ошибок фотометрии, различная глубина фотометрии в разных фильтрах приводит к разному уширению последовательности звёзд в разных цветах, в отдельных фильтрах появляются дроп-ауты. Всё это сильно усложняет применение данного метода для поиска слабых необычных объектов. Исходя из этого, нами был разработан комбинированный метод поиска квазаров по данным широкополосной оптической фотометрии, инфракрасной фотометрии и среднеполосной оптической фотометрии, позволяющий надёжно отбирать слабые квазары с полнотой выборки > 95% в диапазоне красных смещений от 0 до 6, и определять их фотометрическое красное смещение с высокой точностью. Алгоритм отбора кандидатов в квазары разработан для выделения кандидатов среди точечных объектов поля, и эффективно работает по нашим наблюдательным данным до звёздной величины $r_{SDSS} = 22.5^m$. Его условно можно разделить на три этапа. Первый – выделение в цветовом пространстве (g-r; r-z; i-z) последовательности звёзд (такой набор фильтров используется потому, что для них глубина имеющихся фотометрических данных максимальна и однородна, и для объектов до $r_{SDSS} = 22.5^m$ практически не происходит уширения звёздной последовательности). Это осуществляется вычислением евклидового расстояния до 150-го соседа для каждого объекта. Число 150 было рассчитано как количество объектов, составляющих сечение самого узкого участка звёздной последовательности, при толщине сечения, равной минимальной ширине последовательности. При этом звёздная последовательность выделяется наилучшим образом, а также максимальна эффективность выделения известных в поле квазаров (получено экспериментальным путём). Полученное расстояние отражает плотность окружающих объектов в цветовом пространстве и позволяет выделять уникальные объекты, отличающиеся по спектральным распределениям энергии от звёзд. Обозначив это расстояние как dist1, мы построили графики распределения объектов, где чёрными точками отмечены все точечные объекты поля, красными – спектрально подтверждённые квазары, синими – отобранные вручную по среднеполосным распределениям энергии квазары (рис. 3.1). Далее, на графиках были выделены и отброшены области, густо заселённые звёздами и не содержащие при этом известных квазаров, а также областей с вероятным расположением далёких квазаров (рис. 3.2). Такой подход позволяет отбрасывать звёзды, оставляя все квазары нетронутыми, даже

если в инфракрасных цветах возникнет ошибка или дроп-аут. Таким образом, из 5490 точечных объектов поля было отобрано 1355 кандидатов в квазары.

Рисунок 3.1 — Отношения цвета объектов (r-z) и (w1-w2) и расстояния dist1. На первой диаграмме хорошо отделяются звёзды поздних спектральных классов, на второй – все звёзды, имеющие удовлетворительные ошибки фотометрии w1 и w2. Красным выделены квазары, имеющие спектроскопию SDSS, синим - кандидаты в квазары, отобранные вручную по среднеполосным распределениям энергии.

Кроме того, были изучены возможности использования астрометрических данных GAIA для отделения звёзд от внегалактических объектов. Наличие параллакса позволяет отбросить больше 90% звёзд до $r = 20.5^m$, и отдельные звёзды до $r = 21^m$, при этом для спектральных квазаров ошибочно определённого наличия параллакса обнаружено не было. Для более слабых объектов точность измерений GAIA недостаточна. Отобранные звёзды отмечены на приведённых ниже цветовых диаграммах фиолетовыми точками (рис. 3.3, рис. 3.4).

На следующем этапе были построены среднеполосные спектральные распределения энергии объектов выборки, рассматриваемые как низкодисперсионные спектры (рисунок 3.5). Каждый из них просматривался вручную. В итоговую выборку были отобраны 682 объекта из 1355, классифицированные как квазары. Остальные 673 объекта по среднеполосным спектральным распределениям энергии были классифицированы как звезды, из-за выбросов в данных либо из-за низкой глубины и пространственного разрешения инфракрасной фотометрии отличающиеся от большинства звезд.

На последнем этапе фотометрические красные смещения определялись с помощью пакета ZEBRA [94], правильность определения проверялась вручную. Подробное описание данного этапа будет приведено далее. На рисунке 3.6 показано соотношение фотометрических и спектроскопических красных смещений

Рисунок 3.2 — Отношения цвета объектов (r-z) и (w1-w2) и расстояния dist1. По первой диаграмме отделены звёзды поздних спектральных классов, по второй – все звёзды, имеющие удовлетворительные ошибки фотометрии w1 и w2. Красным выделены квазары, имеющие спектроскопию SDSS, синим кандидаты в квазары, отобранные вручную по среднеполосным распределениям энергии

объектов по данным спектроскопии SDSS. Также мы провели спектроскопию отдельных объектов на телескопе БТА (Большой азимутальный телескоп САО РАН) для проверки качества классификации.

Итоговый каталог квазаров содержит данные о 682 квазарах, организованные по столбцам так, как указано в таблице 2. 209 из них имеют спектроскопию SDSS. Для остальных 473 впервые проведена классификация и определены красные смещения по данным среднеполосной фотометрии на 1-м телескопе Шмидта. Также для четырех из них была проведена спектроскопия на телескопе БТА САО РАН и определены спектроскопические красные смещения. Полный фотометрический каталог квазаров выложен в открытый доступ на сайте САО РАН. Каталог квазаров с основными характеристиками, такими как координаты, красные смещения и звездная величина в фильтре r_{SDSS} , приведён в приложении А.

Рисунок 3.3 — Отношения цвета объектов (r-z) и (w1-w2) и расстояния dist1. Красным выделены квазары, имеющие спектроскопию SDSS, синим объекты, надёжно классифицируемые как квазары, зелёным - объекты, с высокой вероятностью являющиеся квазарами.

Столбец	Единицы	Описание
ID	-	Unique object ID
ra	degree	R.A., J2000
dec	degree	decl., J2000
zph	-	photometric redshift
zsp	-	spectroscopic redshift
m400	mag	mb400-band magnitude
er400	mag	mb400-band magnitude error
m425	mag	mb425-band magnitude
er425	mag	mb425-band magnitude error
m450	mag	mb450-band magnitude
er450	mag	mb450-band magnitude error
m475	mag	mb475-band magnitude
er475	mag	mb475-band magnitude error
m500	mag	mb500-band magnitude
er500	mag	mb500-band magnitude error
m525	mag	mb525-band magnitude
er525	mag	mb525-band magnitude error
m550	mag	mb550-band magnitude
er550	mag	mb550-band magnitude error
m575	mag	mb575-band magnitude

Таблица 2 — Описание столбцов каталога квазаров

er575	mag	mb575-band magnitude error
m600	mag	mb600-band magnitude
er600	mag	mb600-band magnitude error
m625	mag	mb625-band magnitude
er625	mag	mb625-band magnitude error
m650	mag	mb650-band magnitude
er650	mag	mb650-band magnitude error
m675	mag	mb675-band magnitude
er675	mag	mb675-band magnitude error
m700	mag	mb700-band magnitude
er700	mag	mb700-band magnitude error
m725	mag	mb725-band magnitude
er725	mag	mb725-band magnitude error
m750	mag	mb750-band magnitude
er750	mag	mb750-band magnitude error
m775	mag	mb775-band magnitude
er775	mag	mb775-band magnitude error
mu	mag	u-SDSS magnitude
eru	mag	u-SDSS magnitude error
mg	mag	g-SDSS magnitude
erg	mag	g-SDSS magnitude error
mr	mag	r-SDSS magnitude
err	mag	r-SDSS magnitude error
mi	mag	i-SDSS magnitude
eri	mag	i-SDSS magnitude error

Рисунок 3.4 — Отношения цвета объектов (r-z) и (w1-w2) и расстояния dist1. Красным выделены квазары, имеющие спектроскопию SDSS, синим объекты, надёжно классифицируемые как квазары, зелёным - объекты, с высокой вероятностью являющиеся квазарами. Фиолетовым выделены объекты, имеющие параллакс на уровне > 5σ по данным астрометрического обзора GAIA.

Рисунок 3.5 — Пример графиков среднеполосных распределений энергии двух квазаров, не имеющих спектроскопии SDSS

3.3 Определение фотометрических красных смещений

Оценка фотометрических красных смещений успешно применена к многочисленным фотометрическим каталогам галактик. Распределение энергии в спектре галактики сравнивалось с базой данных шаблонных распределений энергии в широком диапазоне красных смещений; наилучшее согласие между двумя спектрами рассматривалось как фотометрическое красное смещение. Сама идея, несмотря на простоту, основана на сложном и неоднозначном процессе подбора наилучших шаблонных спектров. В качестве входных данных мы имеем значения потоков от объекта в N фильтрах, их ошибки, шаблонный (template) спектр и кривые пропускания используемых светофильтров. Обозначим наблюдаемые потоки как F_i , их ошибки как ΔF_i , кривые пропускания фильтров как $D_i(\lambda)$, распределение энергии в template-спектре как $S(\lambda)$, модельные потоки как T_i . Предполагается, что наблюдаемые потоки исправлены за спектральную чувствительность приемника. Тогда

$$T_i = \int_0^{\infty} S(\lambda) D_i(\lambda) d\lambda$$
(3.1)

Критерий χ^2 вычисляется следующим образом:

$$\chi^{2} = \sum_{i=1}^{N} \frac{(\alpha T_{i} - F_{i})^{2}}{\Delta F_{i}^{2}}$$
(3.2)

Где нормировочный множитель α можно вычислить, исходя из соображений о минимуме χ^2 при фиксированных значениях потоков, продифференцировав выражение для χ^2 по α и приравняв значение производной 0, получаем:

$$\alpha = \frac{\sum_{i=1}^{N} \frac{T_i F_i}{\Delta F_i^2}}{\sum_{i=1}^{N} \frac{T_i^2}{\Delta F_i^2}}$$
(3.3)

Вычислив значение χ^2 , легко вычислить критерий значимости:

$$P(\chi^2) = \frac{\int\limits_{\chi^2} e^{-t} t^{\frac{N}{2}-1} dt}{\int\limits_{0} e^{-t} t^{\frac{N}{2}-1} dt}$$
(3.4)

В качестве наиболее простого примера рассмотрим попытку проклассифицировать объект как звезду. Для этого необходимо построить модельные потоки для звезд из какой-либо библиотеки звездных спектров, например Pickles, взятых в определенной последовательности, скажем, по спектральным классам. Тогда после вычисления значения χ^2 для каждого типа спектра будет получена зависимость критерия значимости каждого такого определения от спектрального класса и класса светимости.

Традиционная техника определения фотометрических красных смещений, хорошо зарекомендовавшая себя при определении красных смещений галактик, в общем виде плохо применима к квазарам. В отличие от галактик, цвета квазаров не образуют плавную поверхность в цветовом пространстве, когда конкретный цветовой избыток соответствует единственному красному смещению. К популяции AGN относят разные типы объектов (BAL QSOs, BL Lacs и т.д.). И вот здесь возникает большая неопределенность с выбором шаблонных спектров для классификации и определения красных смещений квазаров. Хорошего (т.е описывающего большинство встречающихся типов спектров квазаров) набора шаблонных спектров не существует. Разные команды используют разные наборы шаблонных спектров: от эмпирических до синтетических, иногда комбинацию тех и других (см. Главу 1). В этой работе мы выбрали прямолинейную стратегию: мы используем для определения фотометрических красных смещений объектов-кандидатов в квазары синтетические распределения энергии, соответствующие первому (наиболее многочисленному) типу квазаров из библиотеки LePhare с показателем степенного континуума от -1.25 до -0.2 и вариациями эквивалентной ширины линии Ly_{α} от 42Å до 168Å. Для расчета фотометрических красных смещений мы использовали набор программ ZEBRA (Zurich's Extragalactic Bayesian Redshift Analyzer [95]), в котором реализованы описанные выше алгоритмы. Точность определения фотометрического красного смещения составляет $\sigma_{\text{NMAD}} < 0.02$, а доля ошибочных определений составляет $(\Delta z/(1+z) > 5. \sigma_{\text{NMAD}}) \sim 9\%$ во всём диапазоне красных смещений. На рисунке 3.6 приведено сравнение фотометрических красных смещений квазаров, полученных с помощью программного обеспечения ZEBRA, и спектроскопических красных смещений из базы данных SDSS. Общее количество квазаров со спектрально-измеренными красными смещениями в наблюдаемом поле HS47.5-22 составляет 236.

Рисунок 3.6 — Сравнение фотометрических красных смещений $z_{\rm ph}$ квазаров, полученных с помощью программного инструмента ZEBRA, со спектроскопическими красными смещениями $z_{\rm sp}$ квазаров, взятых из обзора SDSS. Точность определения фотометрического красного смещения составляет $\sigma_{\rm NMAD} < 0.015$, процент отклоняющихся значений $\Delta z/(1+z) > 5. * \sigma_{\rm NMAD} \sim 2.9\%$ во всём диапазоне красных смещений. Пунктирная линия показывает линию равных фотометрических и спектральных красных смещений.

Для проверки качества классификации и определения красных смещений объектов, для которых отсутствует спектроскопия SDSS, была проведена спектроскопия на БТА на приборах SCORPIO [96] и SCORPIO-2 [97]. Примеры полученных спектров приведены на рис. 3.7 и 3.8.

Рисунок 3.7 — Пример спектров квазаров на 3 < z < 4, снятых на БТА (спектрографы SCORPIO [96] и SCORPIO-2 [97], спектроскопия с длинной щелью)

3.4 Оценка полноты отбора квазаров

Мы промоделировали полноту отбора квазаров, используя предел обнаружения эмиссионных линий в среднеполосных фильтрах. Учитывались распределения каждой эмиссионной линии по эквивалентным ширинам [98] и уширение линий из-за красного смещения. Линия считалась зарегистрированной, если она регистрировалась на уровне 3σ над континуумом. В расчете использовались шесть эмиссионных линий: L_{α} , CIV, CIII, MgII, H_{β} , H_{α} . Видно, что при больших красных смещениях (z > 2,2) вероятность обнаружения линий оценивается в 80% и выше для объектов ярче $AB = 22.5^m$ (рис. 3.9). В свою очередь, на красных смещениях 1 < z < 2.2 полнота отбора более 90% достигается применением широкополосных критериев u - g < 0.6 и w1 - w2 > 0.4[52] (рис. 3.10). Таким образом, полученная выборка квазаров имеет полноту более 80% во всем исследуемом диапазоне красных смещений, поэтому для изу-

Рисунок 3.8 — Пример спектров квазаров на 4 < z < 5, снятых на БТА (спектрографы SCORPIO [96] и SCORPIO-2 [97], спектроскопия с длинной щелью)

Рисунок 3.9 — Моделирование полноты отбора квазаров по среднеполосным фотометрическим данным. Цветовая градация от белого до черного указывает на уровни полноты 95, 80, 50, 30 и 10 процентов соответственно.

Рисунок 3.10 — Отбор квазаров на красном смещении z < 2.2 по критериям u - g и W1 - W2. Синим и зелёным отмечены известные в поле квазары, а также квазары, отобранные вручную по среднеполосным спектральным распределениям энергии. Полнота отбора объектов на 0 < z < 1 равна 73%, на 1 < z < 2.2 равна 92% до $r_{SDSS} = 22.5^m$

чения пространственной плотности и функции светимости квазаров коррекция за неполноту выборки не требуется.

3.5 Результаты главы 3

В данной главе описывается идея нового метода создания репрезентанивной выборки активных ядер галактик, нацеленного на исключение из выборки объектов, не являющихся квазарами, с дальнейшей чисткой полученной выборки по среднеполосным спектральным распределениям энергии. Приводится реализация данного метода на полученных в поле HS47.5-22 наблюдательных данных. Даются оценки полноты полученной выборки квазаров на первом этапе, а также проводится моделирование полноты отбора квазаров по среднеполосным спектральным распределениям энергии на втором этапе. Описывается процесс определения фотометрических красных смещений квазаров выборки. Приводится описание созданного каталога квазаров.

Глава 4. Исследование функции светимости квазаров

Результаты, таблицы и рисунки, представленные в данной главе, опубликованы в работе диссертанта [6], составившую основу текста главы. Личный вклад в данные работы отмечен во введении к диссертации.

4.1 Введение

Эволюция функции светимости квазаров (QLF) с красным смещением является ключевым наблюдательным ограничением роста сверхмассивных черных дыр во Вселенной [15; 99—101]. Поведение функции светимости накладывает ограничения на рабочие циклы квазаров, историю роста сверхмассивных черных дыр и коэволюцию черных дыр и их галактик-хозяев [18; 102]. Поскольку наш каталог квазаров создан в достаточно большом поле (2.38 квадратных градуса), имеет высокую полноту и ограничен звездной величиной $r_{SDSS} = 22.5^m$, он является актуальным для изучения функции светимости квазаров до z = 4и в диапазоне абсолютных звездных величин ярче $M = -24^m$.

4.2 Функция светимости квазаров

Для построения функции пространственной плотности и функции светимости квазаров использовались фотометрические красные смещения. Геометрия сопутствующего объема рассчитывалась согласно работе Hogg 1999 [103]. Сперва вычислялось сопутсвующее расстояние вдоль луча зрения по формулам:

$$E(z) = \sqrt{(\Omega_m * (1+z)^3 + \Omega_k * (1+z)^3 + \Omega_\lambda)}$$
(4.1)

$$D_{c} = D_{H} \int_{0}^{z} \frac{dz'}{E(z')}$$
(4.2)

где D_c – сопутствующее расстояние, E(z) – вспомогательная функция, z – красное смещение, $\Omega_m = 0.3$, $\Omega_k = 0$, $\Omega_\lambda = 0.7$ – космологические параметры.

Далее, поскольку мы брали модель с $\Omega_k = 0$, трансверсальное сопутствующее расстояние D_M высчитывалось как

$$D_M = D_c \tag{4.3}$$

Затем вычислялось расстояние по угловому диаметру по формуле

$$D_A = \frac{D_M}{1+z} \tag{4.4}$$

И, наконец, вычислялся единичный элемент сопутствующего объема

$$dV_c = D_H \frac{(1+z)^2 D_A^2}{E(z)} d\Omega dz$$
(4.5)

где $D_H = \frac{c}{H_0}$ – Хаббловское расстояние, H_0 – постоянная Хаббла, $d\Omega$ – единичный угол. Зная угловой размер поля обзора и единичный элемент сопутствующего объёма, мы можем посчитать количество квазаров в разных диапазонах красного смещения и вычислить их пространственную плотность.

Чтобы получить абсолютные звездные величины квазаров для последующего анализа, мы решили привязать все светимости к уровню УФ-континуума в системе покоя на длине волны $\lambda = 145nm$, для чего необходимо было высчитать К-коррекцию. Это было реализовано путем определения по шаблонному спектру с наклоном континуума $\alpha = -0.75$ соотношения звездной величины на заданном красном смещении в фильтре i_{SDSS} , а также в синтетической узкой прямоугольной полосе пропускания на длине волны 145nm * (z + 1). Для этого шаблонный спектр предварительно корректировался за межгалактическое поглощение на заданном красном смещении согласно модели Мадау[33]. Длина волны $\lambda = 145nm$ выбиралась исходя из соображений, что на ней нет типичных для квазаров эмиссионных линий. Кроме того, на эту длину волны пересчитывались абсолютные звездные величины в обзорах СОМВО-17, COSMOS и др., что позволяет непосредственно проводить сравнение.

Вычисление абсолютных звездных величин квазаров на длине волны $\lambda = 145 nm$ проводилось по формулам:

$$M_{145} = m_{i_{SDSS}} - DM - K_{corr}$$
(4.6)

$$DM = 5 * \log(\frac{D_L}{10Mpc}) \tag{4.7}$$

$$D_L = D_A (1+z)^2 (4.8)$$

где $m_{i_{SDSS}}$ – видимая звездная величина в фильтре i_{SDSS} , DM – модуль растояния, K_{corr} – К-коррекция, D_L – расстояние яркости, D_A – расстояние по угловому диаметру.

Распределение квазаров по абсолютной звёздной величине и красному смещению приведено на рис. 4.1.

Рисунок 4.1 — Зависимость абсолютной звездной величины квазаров на длине волны 145*nm* от красного смещения.

Мы изучили зависимости пространственной плотности квазаров от красного смещения, используя составленную нами выборку квазаров, а также выборки квазаров из обзоров COMBO-17 [46], COSMOS [25], ALHAMBRA [24], Stripe-82 [61], SDSS-DR14 [53] (рис. 4.2). Также рассмотрели зависимость пространственной плотности от красного смещения для разных диапазонов светимости квазаров (рис. 4.3). Была построена дифференциальная функции светимости квазаров и проведено сравнение с обзором COMBO-17 [46] (рис. 4.4).

Рисунок 4.2 — Зависимость пространственной плотности квазаров от красного смещения, полученная по нашим данным, в сравнении с данными обзоров COMBO-17 [46], COSMOS [25], ALHAMBRA [24], Stripe-82 [61], SDSS-DR14 [53].

Рисунок 4.3 — Зависимость пространственной плотности квазаров от красного смещения, построенная для разных диапазонов светимости

Рисунок 4.4 — Дифференциальная функция светимости квазаров, полученная по нашим данным, в сравнении с данными обзора COMBO-17 [46]

4.3 Сравнение с результатами других обзоров

Анализируя доступные данные, мы можем видеть разницу в пространственной плотности в разных обзорах (рис. 4.2). Для SDSS-DR14, Stripe-82, ALHAMBRA и COMBO-17 пространственная плотность начинает уменьшаться в диапазоне красных смещений 2 < z < 2.5, тогда как по нашим данным уменьшение начинается только при z = 3. По данным обзора COSMOS, в диапазоне 3 < z < 5 распределение пространственной плотности квазаров совпадает с нашими данными. Данные различия могут быть вызваны как разной глубиной обзоров, так и селекционными эффектами, по-разному влияющими на качество выборок.

Зависимость пространственной плотности квазаров от красного смещения, построенная для разных диапазонов светимости по нашим данным (рис. 4.3), наглядно демонстрирует, что для объектов ярче -24^m , -25^m и -26^m максимум пространственной плотности соответствует z = 2.7. Это можно объяснить ограничением выборки по глубине и потерей слабых активных ядер на больших красных смещениях. В то же время для самых ярких объектов (ярче -27^m) пространственная плотность квазаров остаётся практически постоянной вплоть до z = 4. Кроме того, сравнение функций светимости квазаров по нашим данным и по данным обзора COMBO-17 (рис. 4.4) показывает, что мы имеем похожую картину на z < 3, а на z > 3 пространственная плотность квазаров средней светимости (-25^m и -26^m) получается существенно выше по нашим данным. Это свидетельствует о том, что снижение пространственной плотности квазаров с красным смещением после пика на 2 < z < 3 происходит не так стремительно, как было рассчитано по данным предыдущих обзоров, что может сделать относительный вклад квазаров в реионизацию водорода при 6 < z < 10значительным. В то время как пик активности квазаров около 2 < z < 3 ответственен за реионизацию He-II при z = 3 [104; 105], относительный вклад квазаров в реионизацию водорода при 6 < z < 10 не так хорошо ограничен. Наблюдаемое снижение пространственной плотности ярких квазаров при z > 3 в широкополосных фотометрических обзорах (например, SDSS) было воспринято как свидетельство того, что квазары незначительно способствуют реионизации водорода [106; 107]. Однако в таких обзорах, как SDSS, можно найти только самые яркие квазары с высоким красным смещением, имеющие отличные от звёзд широкополосные цветовые избытки. При этом теряются квазары, имеющие цвета звезд в широкополосных фильтрах, а также не учитывается вклад слабых квазаров в ионизирующий фон. Слабый конец сложно изучать при высоком красном смещении из-за необходимости в полях обзора, которые одновременно достаточно глубоки, чтобы обнаружить слабые источники, и достаточно широки, чтобы найти статистически значимое количество квазаров. Кроме того, последующая спектроскопия затруднена из-за слабости источников. Две группы недавно исследовали слабый конец QLF при z = 4: Glikman et al. 2011 [108], используя части обзора Deep Lens (DLS; [109]) и NOAO Deep Wide-Field Survey (NDWFS; [110]) площадью 3,76 квадратных градуса, и Ikeda et al. 2011 [111] для поля COSMOS [112] площадью 1,64 квадратных градуса. Данные исследования расходятся в абсолютной пространственной плотности квазаров с низкой светимостью примерно в четыре раза, с более высокой пространственной плотностью в работе Glikman et al. 2011. Это расхождение приводит к различным картинам эволюции квазаров. Результат, о котором сообщается в Glikman et al. 2011 подразумевает, что снижение пространственной плотности слабых квазаров с красным смещением после пика на 1 < z < 2 в конечном итоге прекращается и, возможно, обращается вспять, что может сделать вклад квазаров в космическую реионизацию значительным. Дальнейшее уточнение данного вопроса требует более глубоких среднеполосных наблюдательных данных, затрагивающих ближний инфракрасный диапазон, а также разработки новых методов поиска далеких квазаров, рассчитаных на создание репрезентативной выборки на z > 4.

4.4 Результаты главы 4

В данной главе описывается построение функции пространственной плотности и функции светимости по полученному каталогу квазаров. Определяются абсолютные звездные величины квазаров на длине волны $\lambda = 145nm$ в системе покоя, рассчитывается геометрия пространства в рамках λ -CDM модели с космологическими параметрами $\Omega_m = 0.3$, $\Omega_k = 0$, $\Omega_{\lambda} = 0.7$, $H_0 = 70kms^{-1}Mpc^{-1}$. Строится функция пространственной плотности, а также функция светимости для разных диапазонов красного смещения и проводится сравнение с обзорами SDSS, ALHAMBRA, COSMOS и COMBO-17. Делается вывод о том, что вклад квазаров в реионизацию водорода при 6 < z < 10 может быть недооценен.

Заключение

Задача состояла в проведении наблюдений избранных областей неба на 1-м телескопе Шмидта, создании на их основе репрезентативной выборки активных ядер галактик с хорошо определенными эффектами селекции и последующем анализе эволюции их физических свойств в широком диапазоне красных смещений. Одной из важных составляющих этой работы стало детальное изучение существующих методов создания репрезентативных выборок активных ядер галактик, изучение селекционных эффектов, возникающих при отборе квазаров, и разработка нового метода отбора квазаров. В результате работы получены однородные наблюдательные данные для поля HS47.5-22 площадью примерно 2.38 квадратных градуса, создана полная по потоку выборка из 682 квазаров ярче $R_{AB} = 22.5^m$ в диапазоне красных смещений 1 < z < 5, проанализирована эффективность различных методов поиска квазаров, разработан собственный алгоритм отбора квазаров, построен оптимальный по полноте и чистоте каталог квазаров в поле HS47.5-22. Автором проведено определение абсолютных звёздных величин квазаров с учётом межгалактического поглощения и космологических эффектов, проведено построение функции светимости квазаров, сравнение свойств квазаров с результатами работ других авторов. Автором был создан каталог из 682 квазаров в поле HS47.5-22. Для 473 из них впервые проведена классификация и определены красные смещения по данным среднеполосной фотометрии на 1-м телескопе Шмидта и спектроскопии на телескопе БТА САО РАН. Показано, что функция светимости квазаров, построенная по полученной выборке, демонстрирует более высокие значения в диапазоне красных смещений 3 < z < 4, в сравнении с данными обзоров SDSS, ALHAMBRA, COSMOS и COMBO-17.

В ходе исследований были получены следующие результаты:

- Исследованы возможности модернизированного 1-м телескопа Шмидта БАО НАН для глубокой фотометрии в широких полях с широкополосными и среднеполосными фильтрами. Показано, что для звездообразных объектов в широкополосных фильтрах за 2 часа экспозиции достигается глубина 25^m, а в среднеполосных фильтрах за 1 час экспозиции достигается глубина 23^m.
- 2. Проведен среднеполосный фотометрический обзор на 1-м телескопе Шмидта БАО НАН. Разработан и отлажен алгоритм обработки полученных данных.
- 3. Разработан и отлажен алгоритм отбора кандидата в квазары по среднеполосным и широкополосным фотометрическим данным, полученным на 1-м телескопе Шмидта БАО, а также по данным оптических обзоров SDSS и DECaLS, инфракрасного обзора WISE, астрометрического обзора GAIA, рентгеновского обзора ROSAT и радио обзороа FIRST. Создана выборка из 682 квазаров в поле HS47.5-22.
- 4. Проведено изучение статистических свойств полученной выборки квазаров, построена функция светимости, проведено сравнение с результатами обзоров SDSS, COMBO-17, COSMOS, ALHAMBRA.
- Показано, что функция светимости квазаров, построенная по полученной выборке, демонстрирует более высокие значения в диапазоне красных смещений 3 < z < 4, в сравнении с данными обзора COMBO-17.

Благодарности

Автор признателен научному руководителю Додонову Сергею Николаевичу, благодаря которому поступил в аспирантуру САО РАН, и под руководством которого данное диссертационное исследование было проведено и завершено. Автор выражает благодарность коллегам из ЛСФВО САО РАН, которые всегда были готовы оказать помощь как в исследованиях, так и в бытовых вопросах. Также автор выражает благодарность Тиграну Акоповичу Мовсисяну за гостеприимство и всестороннее участие и содействие в проведении среднеполосного фотометрического обзора.

Список литературы

- Antonucci R. Unified models for active galactic nuclei and quasars. // Annual Review of Astron and Astrophys. — 1993. — янв. — т. 31. — с. 473—521. — DOI: 10.1146/annurev.aa.31.090193.002353.
- Urry C. M., Padovani P. Unified Schemes for Radio-Loud Active Galactic Nuclei // Publications of the ASP. — 1995. — сент. — т. 107. — с. 803. — DOI: 10.1086/133630. — arXiv: astro-ph/9506063 [astro-ph].
- Heckman T. M., Best P. N. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe // Annual Review of Astron and Astrophys. — 2014. — авг. — т. 52. — с. 589— 660. — DOI: 10.1146/annurev-astro-081913-035722. — arXiv: 1403.4620 [astro-ph.GA].
- Kormendy J., Richstone D. Inward Bound—The Search For Supermassive Black Holes In Galactic Nuclei // Annual Review of Astron and Astrophys. – 1995. – янв. – т. 33. – с. 581. – DOI: 10.1146/annurev.aa.33.090195.003053.
- A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion / K. Gebhardt [и др.] // Astrophysical Journal, Letters. — 2000. авг. — т. 539, № 1. — с. L13—L16. — DOI: 10.1086/312840. — arXiv: astroph/0006289 [astro-ph].
- Peng C. Y. How Mergers May Affect the Mass Scaling Relation between Gravitationally Bound Systems // The Astrophysical Journal. — 2007. дек. — т. 671, № 2. — с. 1098—1107. — DOI: 10.1086/522774. — URL: https://doi.org/10.1086/522774.
- Jahnke K., Macciò A. V. The Non-causal Origin of the Black-hole-galaxy Scaling Relations // Astrophysical Journal. — 2011. — июнь. — т. 734, № 2. — с. 92. — DOI: 10.1088/0004-637X/734/2/92. — arXiv: 1006.0482 [astro-ph.CO].
- A luminous quasar at a redshift of z = 7.085 / D. J. Mortlock [и др.] // Nature. - 2011. - июнь. - т. 474, № 7353. - с. 616-619. - DOI: 10.1038/ nature10159. - arXiv: 1106.6088 [astro-ph.CO].

- Baryon acoustic oscillations in the Lyα forest of BOSS quasars / N. G. Busca [и др.] // Astronomy and Astrophysics. — 2013. — апр. — т. 552. — А96. — DOI: 10.1051/0004-6361/201220724. — arXiv: 1211.2616 [astro-ph.CO].
- Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IV. Hβ Time Lags and Implications for Super-Eddington Accretion / P. Du [и др.] // Astrophysical Journal. — 2015. — июнь. — т. 806, № 1. — с. 22. — DOI: 10.1088/0004-637X/806/1/22. — arXiv: 1504.01844 [astro-ph.GA].
- 11. A New Cosmological Distance Measure Using Active Galactic Nuclei / D. Watson [и др.] // Astrophysical Journal, Letters. 2011. окт. т. 740, № 2. с. L49. DOI: 10.1088/2041-8205/740/2/L49. arXiv: 1109.4632 [astro-ph.CO].
- Risaliti G., Lusso E. Cosmology with AGN: can we use quasars as standard candles? // Astronomische Nachrichten. — 2017. — март. — т. 338, № 329. — с. 329—333. — DOI: 10.1002/asna.201713351. — arXiv: 1612.02838 [astro-ph.CO].
- Haehnelt M. G., Rees M. J. The formation of nuclei in newly formed galaxies and the evolution of the quasar population // Mon. Not. R. Astron. Soc. – 1993. – июль. – т. 263, № 1. – с. 168–178. – DOI: 10.1093/mnras/263.1.168.
- Haiman Z., Loeb A. Observational Signatures of the First Quasars // Astrophysical Journal. — 1998. — авг. — т. 503, № 2. — с. 505—517. — DOI: 10.1086/306017. — arXiv: astro-ph/9710208 [astro-ph].
- 15. Kauffmann G., Haehnelt M. A unified model for the evolution of galaxies and quasars // Mon. Not. R. Astron. Soc. 2000. янв. т. 311, № 3. с. 576— 588. DOI: 10.1046/j.1365-8711.2000.03077.х. arXiv: astro-ph/9906493 [astro-ph].
- Meiksin A., Madau P. On the Photoionization of the Intergalactic Medium by Quasars at High Redshift // Astrophysical Journal. 1993. июль. т. 412. с. 34. DOI: 10.1086/172898.
- 17. Boyle B. J., Terlevich R. J. The cosmological evolution of the QSO luminosity density and of the star formation rate // Mon. Not. R. Astron. Soc. 1998. —

янв. — т. 293, № 2. — с. L49—L51. — DOI: 10.1046/j.1365-8711.1998.01264. x. — arXiv: astro-ph/9710134 [astro-ph].

- Cosmological Evolution of the Hard X-Ray Active Galactic Nucleus Luminosity Function and the Origin of the Hard X-Ray Background / Y. Ueda [и др.] // Astrophysical Journal. — 2003. — т. 598, № 2. — с. 886— 908. — arXiv: astro-ph/0308140 [astro-ph].
- Barger A. J., Cowie L. L. The Number Density of Intermediate- and High-Luminosity Active Galactic Nuclei at z ~2-3 // Astrophysical Journal. – 2005. – T. 635, № 1. – c. 115–122. – arXiv: astro-ph/0508558 [astro-ph].
- Miyaji T., Hasinger G., Schmidt M. Soft X-ray AGN luminosity function from it ROSAT surveys. I. Cosmological evolution and contribution to the soft X-ray background // A&A. — 2000. — т. 353. — с. 25—40. — arXiv: astro-ph/9910410 [astro-ph].
- 21. The Luminosity Function of X-Ray-selected Active Galactic Nuclei: Evolution of Supermassive Black Holes at High Redshift / J. D. Silverman [и др.] // Astrophysical Journal. 2008. т. 679, № 1. с. 118—139. arXiv: 0710. 2461 [astro-ph].
- 22. The evolution of faint AGN between z = ~ 1 and z = ~ 5 from the COMBO-17 survey / C. Wolf [и др.] // А&А. 2003. т. 408. с. 499—514. eprint: astro-ph/0304072.
- 23. Quasi-stellar objects in the ALHAMBRA survey I. Photometric redshift accuracy based on 23 optical-NIR filter photometry / Matute, I. [и др.] // A&A. 2012. т. 542. А20.
- 24. ELDAR, a new method to identify AGN in multi-filter surveys: the ALHAMBRA test case / J. Chaves-Montero [и др.] // MNRAS. 2017. т. 472. с. 2085—2106. arXiv: 1707.07690.
- 25. Evolution of the Quasar Luminosity Function over 3 < z < 5 in the COSMOS Survey Field / D. Masters [и др.] // Astrophysical Journal. — 2012. — т. 755, № 2. — с. 169.

- Molthagen K., Wendker H. J., Briel U. G. Multiwavelength observations of the field HS 47.5/22 in Ursa Major. I. The X-ray catalogue of a medium deep ROSAT survey // Astronomy and Astrophysics, Supplement. — 1997. — т. 126. — с. 509—517.
- 27. A Catalog of 1.4 GHz Radio Sources from the FIRST Survey / R. L. White [и др.] // Astrophysical Journal. — 1997. — т. 475, № 2. — с. 479. — URL: http://stacks.iop.org/0004-637X/475/i=2/a=479.
- 28. Helfand D. J., White R. L., Becker R. H. The Last of FIRST: The Final Catalog and Source Identifications // Astrophys. J. 2015. т. 801. с. 26. arXiv: 1501.01555.
- 29. The USNO-B Catalog / D. G. Monet [и др.] // Astrophysical Journal. 2003. — т. 125, № 2. — с. 984—993. — arXiv: astro-ph/0210694 [astro-ph].
- 30. Bertin E., Arnouts S. SExtractor: Software for source extraction. // Astronomy and Astrophysics, Supplement. — 1996. — т. 117. — с. 393—404.
- 31. Gawiser E., MUSYC Collaboration. The MUSYC Census of Protogalaxies at z=3 // American Astronomical Society Meeting Abstracts. т. 207. 2005. с. 157.01. (American Astronomical Society Meeting Abstracts).
- 32. Oke J. B., Sandage A. Energy Distributions, K Corrections, and the Stebbins-Whitford Effect for Giant Elliptical Galaxies // Astrophysical Journal. — 1968. — окт. — т. 154. — с. 21. — DOI: 10.1086/149737.
- Madau P. Radiative transfer in a clumpy universe: The colors of high-redshift galaxies // Astrophys. J. — 1995. — т. 441. — с. 18—27.
- 34. Haro G., Luyten W. J. Faint Blue Stars in the Region near the South Galactic Pole // Boletin de los Observatorios Tonantzintla y Tacubaya. — 1962. — т. 3. — с. 37—117.
- Markarian B. E. Galaxies with an ultraviolet continuum. // Astrofizika. 1967. — т. 3. — с. 24—38.
- 36. A catalogue of faint, UV-excess objects. / В. J. Boyle [и др.] // MNRAS. 1990. т. 243. с. 1—56.

- 37. Bayesian High-redshift Quasar Classification from Optical and Mid-IR Photometry / G. T. Richards [и др.] // The Astrophysical Journal Supplement Series. — 2015. — т. 219, № 2. — с. 39. — URL: http://stacks. iop.org/0067-0049/219/i=2/a=39.
- 38. Quasar probabilities and redshifts from WISE mid-IR through GALEX UV photometry / М. А. DiPompeo [и др.] // MNRAS. 2015. т. 452. с. 3124—3138. arXiv: 1507.02884.
- 39. Kotov S. QSO samples property study // Research Repository of Saint Petersburg State University. — 2016. — URL: https://dspace.spbu.ru/ handle/11701/4681.
- 40. *Baum W. A.* Photoelectric Magnitudes and Red-Shifts // Problems of Extra-Galactic Research. т. 15 / под ред. G. C. McVittie. 1962. с. 390. (IAU Symposium).
- 41. Hickson P., Gibson B. K., Callaghan K. A. S. Multinarrowband Imaging a New Technique for Multi-Object Spectrophotometry // MNRAS. - 1994. -T. 267. - c. 911.
- 42. Chen J.-S. Wide Field Imaging and Photometry with 2k X 2k CCD // Astronomy from Wide-Field Imaging. т. 161 / под ред. Н. Т. MacGillivray. — 1994. — с. 17. — (IAU Symposium).
- 43. Multicolor Photometric Observations of Candidate Optical Counterparts to ROSAT Faint X-Ray Sources in a 1 Square Degree Field of the BATC Survey / H. Zhang [и др.] // The Astronomical Journal. — 2004. — т. 127, № 5. c. 2579. — URL: http://stacks.iop.org/1538-3881/127/i=5/a=2579.
- 44. Multi-color classification in the calar alto deep imaging survey* / Wolf, C.
 [и др.] // А&А. 2001. т. 365, № 3. с. 681—698. URL: https://@doi.org/10.1051/0004-6361:20000064.
- 45. The Multiwavelength Survey by Yale-Chile (MUSYC): Survey Design and Deep Public UBVRIz' Images and Catalogs of the Extended Hubble Deep Field-South / E. Gawiser [и др.] // Astrophys. J. Suppl. 2006. т. 162. с. 1—19. eprint: astro-ph/0509202.
- 46. A catalogue of the Chandra Deep Field South with multi-colour classification and photometric redshifts from COMBO-17 / C. Wolf [и др.] // А&А. 2004. т. 421, № 3. с. 913—936.
- 47. The alhambra survey: A large area multimedium-band optical and nearinfrared photometric survey / M. Moles [и др.] // Astronomical Journal. — 2008. — т. 136, № 3. — с. 1325—1339.
- 48. Ly_α Emitters at Redshift 5.7 in the COSMOS Field / Т. Murayama [и др.] // The Astrophysical Journal Supplement Series. — 2007. — т. 172. — с. 523— 544.
- 49. The miniJPAS survey: Identification and characterization of galaxy populations with the J-PAS photometric system / R. M. González Delgado [и др.] // arXiv e-prints. 2021. arXiv:2102.13121. arXiv: 2102.13121 [astro-ph.GA].
- 50. Measuring Baryon Acoustic Oscillations Along the Line of Sight with Photometric Redshifts: The PAU Survey / N. Benítez [идр.] // Astrophysical Journal. — 2009. — т. 691, № 1. — с. 241—260. — arXiv: 0807.0535 [astro-ph].
- 51. J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey / N. Benitez [и др.] // arXiv e-prints. — 2014. — arXiv:1403.5237. arXiv: 1403.5237 [astro-ph.CO].
- 52. Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample / G. T. Richards [и др.] // Astrophysical Journal. 2002. т. 123. с. 2945—2975. eprint: astro-ph/0202251.
- 53. The Sloan Digital Sky Survey Quasar Catalog: Fourteenth data release / I. Pâris [и др.] // А&А. — 2018. — т. 613. — А51. — arXiv: 1712.05029.
- 54. Photometric Redshifts and Quasar Probabilities from a Single, Data-driven Generative Model / J. Bovy [и др.] // Astrophys. J. — 2012. — т. 749. c. 41. — arXiv: 1105.3975.
- 55. Becker R. H., White R. L., Helfand D. J. The FIRST Survey: Faint Images of the Radio Sky at Twenty Centimeters // Astrophysical Journal. 1995. T. 450. c. 559.

- 56. The ROSAT all-sky survey bright source catalogue / W. Voges [и др.] // A&A. - 1999. - т. 349. - с. 389-405. - eprint: astro-ph/9909315.
- 57. The Time Domain Spectroscopic Survey: Variable Selection and Anticipated Results / E. Morganson [и др.] // Astrophysical Journal. — 2015. — т. 806,
 № 2. — с. 244. — URL: http://stacks.iop.org/0004-637X/806/i=2/a=244.
- 58. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Quasar Target Selection / A. D. Myers [и др.] // Astrophys. J. Suppl. 2015. т. 221. с. 27. arXiv: 1508.04472.
- 59. The Sloan Digital Sky Survey Quasar Catalog. V. Seventh Data Release / D. P. Schneider [и др.] // Astrophysical Journal. 2010. т. 139. с. 2360. arXiv: 1004.1167.
- 60. The FIRST Bright Quasar Survey. II. 60 Nights and 1200 Spectra Later / R. L. White [и др.] // The Astrophysical Journal Supplement Series. 2000. т. 126, № 2. с. 133. URL: http://stacks.iop.org/0067-0049/126/i=2/a=133.
- 61. The extended Baryon Oscillation Spectroscopic Survey: Variability selection and quasar luminosity function / Palanque-Delabrouille, N. [и др.] // А&А. 2016. т. 587. А41.
- Fan X. Simulation of Stellar Objects in SDSS Color Space // Astrophysical Journal. — 1999. — т. 117. — с. 2528—2551. — eprint: astro-ph/9902063.
- 63. Selecting Quasars by Their Intrinsic Variability / К. В. Schmidt [и др.] // Astrophysical Journal. — 2010. — т. 714, № 2. — с. 1194. — URL: http: //stacks.iop.org/0004-637X/714/i=2/a=1194.
- 64. Variability selected high-redshift quasars on SDSS Stripe 82 / N. Palanque-Delabrouille [и др.] // А&А. — 2011. — т. 530. — А122. — arXiv: 1012.2391.
- 65. A high signal-to-noise ratio composite quasar spectrum / P. J. Francis [и др.] // Astrophys. J. 1991. т. 373. с. 465—470.
- 66. Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North / S. Arnouts [и др.] // MNRAS. — 1999. — т. 310. — с. 540— 556. — eprint: astro-ph/9902290.
- 67. The First Release COSMOS Optical and Near-IR Data and Catalog / P. Capak [и др.] // Astrophys. J. Suppl. 2007. т. 172. с. 99—116. arXiv: 0704.2430.

- 68. Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements / A. Leauthaud [и др.] // Astrophys. J. Suppl. 2007. т. 172. с. 219—238. eprint: astro-ph/0702359.
- 69. Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey / M. Polletta [и др.] // Astrophysical Journal. — 2007. — т. 663, № 1. — с. 81. — URL: http://stacks. iop.org/0004-637X/663/i=1/a=81.
- 70. Sloan Digital Sky Survey Quasars in the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) ELAIS N1 Field: Properties and Spectral Energy Distributions / E. Hatziminaoglou [и др.] // The Astronomical Journal. — 2005. — т. 129, № 3. — с. 1198. — URL: http://stacks.iop.org/1538-3881/129/i=3/a=1198.
- 71. The Rest-Frame Extreme-Ultraviolet Spectral Properties of Quasi-stellar Objects / R. C. Telfer [и др.] // Astrophys. J. — 2002. — т. 565. — с. 773— 785. — eprint: astro-ph/0109531.
- 72. Composite Quasar Spectra from the Sloan Digital Sky Survey / D. E. Vanden Berk [и др.] // Astrophysical Journal. — 2001. — т. 122. — с. 549—564. eprint: astro-ph/0105231.
- 73. The Population of High-redshift Active Galactic Nuclei in the Chandra-COSMOS Survey / F. Civano [и др.] // Astrophys. J. - 2011. - т. 741. - с. 91. - arXiv: 1103.2570.
- 74. The 2DF QSO Redshift Survey / S. Croom [и др.] // Multiwavelength AGN Surveys / под ред. R. Mújica, R. Maiolino. — 2004. — с. 57—62.
- Crampton D., Cowley A. P., Hartwick F. D. A. Redshifts of Quasars in the CFGT/MMT Survey: Further Evidence for Isolated Groups // Astrophysical Journal. — 1989. — т. 345. — с. 59.
- 76. Drinkwater M. J. Objective prism measurements of quasar redshifts. // MNRAS. — 1988. — т. 231. — с. 391—396.
- 77. Димитров Г., Бэкер Д. Телескопы и принадлежности к ним. 1947.
- Loh E. D., Spillar E. J. Photometric Redshifts of Galaxies // Astrophysical Journal. — 1986. — т. 303. — с. 154.

- 79. Koo D. C. Multicolor Photometry of Field Galaxies to B approximately equal to 24 // Astrophysical Journal. — 1986. — т. 311. — с. 651.
- Lanzetta K. M., Yahil A., Fernández-Soto A. Star-forming galaxies at very high redshifts // Nature. — 1996. — т. 381, № 6585. — с. 759—763. — arXiv: astro-ph/9606171 [astro-ph].
- 81. The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field / A. J. Connolly [и др.] // The Astrophysical Journal Letters. — 1997. — т. 486, № 1. — с. L11—L14. — arXiv: astro-ph/9706255 [astro-ph].
- 82. Fernández-Soto A., Lanzetta K. M., Yahil A. High-Redshift Galaxies: The HDF and More // Looking Deep in the Southern Sky / под ред. R. Morganti, W. J. Couch. 1999. с. 270. arXiv: astro-ph/9803083 [astro-ph].
- Markarian B. E., Stepanyan D. A. Galaxies with an ultraviolet continuum. // Astrophysics. — 1983. — т. 19. — с. 354.
- 84. One-meter Schmidt telescope of the Byurakan Astrophysical Observatory: New capabilities / S. N. Dodonov [и др.] // Astrophysical Bulletin. — 2017. — т. 72, № 4. — с. 473—479. — URL: https://@doi.org/10.1134/ S1990341317040113.
- 85. Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts / I. Labbé [и др.] // Astrophysical Journal. — 2003. — т. 125, № 3. — с. 1107—1123. — arXiv: astro-ph/0212236 [astro-ph].
- 86. The Multiwavelength Survey by Yale-Chile (MUSYC): Deep Medium-band Optical Imaging and High-quality 32-band Photometric Redshifts in the ECDF-S / C. N. Cardamone [и др.] // Astrophysical Journal, Supplement. — 2010. — т. 189, № 2. — с. 270—285. — arXiv: 1008.2974 [astro-ph.CO].
- 87. The Hubble Deep Field: Observations, Data Reduction, and Galaxy Photometry / R. E. Williams [и др.] // Astrophysical Journal. — 1996. т. 112. — с. 1335. — arXiv: astro-ph/9607174 [astro-ph].

- Szalay A. S., Connolly A. J., Szokoly G. P. Simultaneous Multicolor Detection of Faint Galaxies in the Hubble Deep Field // Astrophysical Journal. — 1999. — т. 117, № 1. — с. 68—74. — arXiv: astro-ph/9811086 [astro-ph].
- 89. A Public, K-Selected, Optical-to-Near-Infrared Catalog of the Extended Chandra Deep Field South (ECDFS) from the Multiwavelength Survey by Yale-Chile (MUSYC) / E. N. Taylor [и др.] // Astrophysical Journal, Supplement. — 2009. — т. 183, № 2. — с. 295—319. — arXiv: 0903.3051 [astro-ph.CO].
- 90. Meisner A. M., Lang D., Schlegel D. J. Another unWISE Update: The Deepest Ever Full-sky Maps at 3-5 μm // Research Notes of the American Astronomical Society. - 2018. - τ. 2, № 1. - c. 1. - arXiv: 1801.03566 [astro-ph.IM].
- 91. Overview of the DESI Legacy Imaging Surveys / A. Dey [и др.] // Astrophysical Journal. — 2019. — т. 157, № 5. — с. 168. — arXiv: 1804.08657 [astro-ph.IM].
- 92. Gaia Data Release 2. Summary of the contents and survey properties / Gaia Collaboration [и др.] // А&A. 2018. т. 616. А1.
- 93. Stellar SEDs from 0.3 to 2.5 µm: Tracing the Stellar Locus and Searching for Color Outliers in the SDSS and 2MASS / K. R. Covey [и др.] // Astronomical Journal. — 2007. — дек. — т. 134, № 6. — с. 2398—2417. — DOI: 10.1086/ 522052. — arXiv: 0707.4473 [astro-ph].
- 94. The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS / R. Feldmann [и др.] // MNRAS. — 2006. — т. 372, № 2. — с. 565— 577. — arXiv: astro-ph/0609044 [astro-ph].
- 95. The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS / R. Feldmann [и др.] // MNRAS. — 2006. — т. 372, № 2. — с. 565— 577. — arXiv: astro-ph/0609044 [astro-ph].
- 96. Afanasiev V. L., Moiseev A. V. The SCORPIO Universal Focal Reducer of the 6-m Telescope // Astronomy Letters. - 2005. - T. 31, № 3. - c. 194-204. - arXiv: astro-ph/0502095 [astro-ph].

- 97. Afanasiev V. L., Moiseev A. V. Scorpio on the 6 m Telescope: Current State and Perspectives for Spectroscopy of Galactic and Extragalactic Objects // Baltic Astronomy. 2011. т. 20. с. 363—370. arXiv: 1106.2020 [astro-ph.IM].
- 98. Chilingarian. Object classification by spectral energy distribution // Astronet. 2003. URL: http://www.astronet.ru/db/msg/1191370.
- 99. Supermassive black holes and the evolution of galaxies. / D. Richstone [и др.] // Nature. 1998. окт. т. 385, № 6701. A14. arXiv: astro-ph/9810378 [astro-ph].
- 100. Wyithe J. S. B., Loeb A. Self-regulated Growth of Supermassive Black Holes in Galaxies as the Origin of the Optical and X-Ray Luminosity Functions of Quasars // Astrophysical Journal. - 2003. - OKT. - T. 595, № 2. - c. 614-623. - DOI: 10.1086/377475. - arXiv: astro-ph/0304156 [astro-ph].
- 101. Local supermassive black holes, relics of active galactic nuclei and the X-ray background / A. Marconi [и др.] // Mon. Not. R. Astron. Soc. 2004. июнь. т. 351, № 1. с. 169—185. DOI: 10.1111/j.1365-2966.2004.07765. x. — arXiv: astro-ph/0311619 [astro-ph].
- 102. The Relation between Quasar and Merging Galaxy Luminosity Functions and the Merger-driven Star Formation History of the Universe / P. F. Hopkins [и др.] // Astrophysical Journal. — 2006. — дек. — т. 652, № 2. — с. 864—888. — DOI: 10.1086/508503. — arXiv: astro-ph/0602290 [astro-ph].
- 103. Hogg D. W. Distance measures in cosmology // arXiv e-prints. 1999. astro—ph/9905116. arXiv: astro-ph/9905116 [astro-ph].
- 104. Patchy intergalactic He II absorption in HE 2347-4342. II. The possible discovery of the epoch of He-reionization / D. Reimers [и др.] // Astronomy and Astrophysics. 1997. нояб. т. 327. с. 890—900. arXiv: astro-ph/9707173 [astro-ph].
- 105. Sokasian A., Abel T., Hernquist L. The epoch of helium reionization // Mon. Not. R. Astron. Soc. — 2002. — май. — т. 332, № 3. — с. 601—616. — DOI: 10.1046/j.1365-8711.2002.05291.х. — arXiv: astro-ph/0112297 [astro-ph].

- 106. Madau P., Haardt F., Rees M. J. Radiative Transfer in a Clumpy Universe.
 III. The Nature of Cosmological Ionizing Sources // Astrophysical Journal. –
 1999. апр. т. 514, № 2. с. 648–659. DOI: 10.1086/306975. arXiv: astro-ph/9809058 [astro-ph].
- 107. Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z~6 Quasars. II. A Sample of 19 Quasars / X. Fan [и др.] // Astronomical Journal. — 2006. — июль. — т. 132, № 1. — с. 117—136. — DOI: 10.1086/504836. — arXiv: astro-ph/0512082 [astro-ph].
- 108. The Faint End of the Quasar Luminosity Function at z ~4: Implications for Ionization of the Intergalactic Medium and Cosmic Downsizing / E. Glikman [и др.] // Astrophysical Journal, Letters. 2011. февр. т. 728, № 2. с. L26. DOI: 10.1088/2041-8205/728/2/L26. arXiv: 1101.0537 [astro-ph.CO].
- 109. Deep lens survey / D. M. Wittman [и др.] // Survey and Other Telescope Technologies and Discoveries. т. 4836 / под ред. J. A. Tyson, S. Wolff. 12.2002. с. 73—82. (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series). DOI: 10.1117/12.457348. arXiv: astro-ph/0210118 [astro-ph].
- 110. Jannuzi B. T., Dey A. The NOAO Deep Wide-Field Survey // Photometric Redshifts and the Detection of High Redshift Galaxies. т. 191 / под ред. R. Weymann [и др.]. — 01.1999. — с. 111. — (Astronomical Society of the Pacific Conference Series).
- Probing the Faint End of the Quasar Luminosity Function at z~4 in the COSMOS Field / H. Ikeda [и др.] // Astrophysical Journal, Letters. 2011. февр. т. 728, № 2. с. L25. DOI: 10.1088/2041-8205/728/2/L25. arXiv: 1011.2280 [astro-ph.CO].
- 112. The Cosmic Evolution Survey (COSMOS): Overview / N. Scoville [и др.] // Astrophysical Journal, Supplement. — 2007. — сент. — т. 172, № 1. — с. 1— 8. — DOI: 10.1086/516585. — arXiv: astro-ph/0612305 [astro-ph].

Список рисунков

1	Различие в пространственной плотности квазаров, отобранных	
	по данным оптических, рентгеновских и радиообзоров [20]	6
1.1	Зависимость количества отобранных активных ядер от их	
	звёздной величины в фильтре R в обзоре SDSS, [53]	18
1.2	Параметры А и γ для квазаров и переменных звёзд [64]	19
1.3	Распределение квазаров QSO_VAR_S82 по красному смещению	
	и звёздным величинам [61]	20
1.4	Кривые пропускания фильтров, используемых в обзоре	
	COMBO-17 [22]	21
1.5	Карта полноты отбора и определения красного смещения по	
	результатам моделирования в обзоре СОМВО-17 [22].	
	Горизонтальная ось - величина в фильтре R, вертикальная ось -	
	красное смещение. Полнота показана градациями серого от 0%	
	(светло-серый) до 120% (чёрный). Белой и черной линией	
	выделены уровни полноты 90% и 50%, соответственно	21
1.6	Кривые пропускания фильтров, используемых в обзоре	
	ALHAMBRA, [23]	23
1.7	Template-спектры, используемые на первом шаге отбора в	
	$ALHAMBRA, [24] \ldots \ldots$	24
1.8	Пример спектрального распределения энергии объекта по	
	фотометрическим данным в 29 фильтрах COSMOS, и	
	соответствующий этому распределению template-спектр, $\left[25\right]$	25
1.9	Морфологическая классификация объектов в COSMOS, [68]	26
1.10	Широкополосные цветовые критерии Richards 2002 [52],	
	рассматриваемые для тестовой выборки поля HS47-22. Красным	
	обозначены квазары, отобранные по среднеполосным	
	распределениям энергии вручную, красными боксами – области	
	отбора квазаров, боксами других цветов – области исключения	
	А-звёзд, М-звёзд и белых карликов. Чёрными точками	
	обозначены все остальные точечные объекты	28

2.1	Спектральная чувствительность камеры Apogee Alta 16M по	
	результатам измерений в лаборатории	32
2.2	Измерения базового уровня bias-overscan в реальных условиях	
	на телескопе. Температура подкупольного пространства	
	менялась от -18°C до $+2$ °C. Пунктирной линией показан средний	
	уровень, штрихпунктирными показано $\pm 0.5 \text{ ADU}$	35
2.3	Набор фильтров 1-м телескопа Шмидта. Пропускание фильтров	
	измерено в сходящемся пучке со светосилой F/2. Кривые	
	пропускания фильтров приведены с учётом чувствительности	
	детектора	36
2.4	Карта поля HS47-22, полученная на 1-м телескопе Шмидта	
	БАО. $RA = 09^{h}50^{m}00^{s}, DEC = +47^{d}35^{m}00^{s}$. Мозаика из 4 х 1	
	кв. градусов с перекрытиями 10 угл. минут. Итоговый размер	
	2.38 кв. градуса. 16 среднеполосных фильтров с FWHM = 250 Å,	
	4 широкополосных фильтра SDSS. Однородное покрытие	
	спектрального диапазона 4000 – 8000 Å, $S/N \approx 5$ для $AB = 23^m$	
	во всех среднеполосных фильтрах. 144 объектов ROSAT до	
	$3.5 * 10^{-14} erg * cm^{-2} * c^{-1}$, 362 объектов FIRST, 209 квазаров SDSS	37
2.5	Точность астрометрии для объектов поля HS47-22	38
3.1	Отношения цвета объектов (r-z) и (w1-w2) и расстояния dist1.	
	На первой диаграмме хорошо отделяются звёзды поздних	
	спектральных классов, на второй – все звёзды, имеющие	
	удовлетворительные ошибки фотометрии w1 и w2. Красным	
	выделены квазары, имеющие спектроскопию SDSS, синим -	
	кандидаты в квазары, отобранные вручную по среднеполосным	
	распределениям энергии	46
3.2	Отношения цвета объектов (r-z) и (w1-w2) и расстояния dist1.	
	По первой диаграмме отделены звёзды поздних спектральных	
	классов, по второй – все звёзды, имеющие удовлетворительные	
	ошибки фотометрии w1 и w2. Красным выделены квазары,	
	имеющие спектроскопию SDSS, синим - кандидаты в квазары,	
	отобранные вручную по среднеполосным распределениям энергии	47

81

3.3 Отношения цвета объектов (r-z) и (w1-w2) и расстояния dist1. Красным выделены квазары, имеющие спектроскопию SDSS, синим - объекты, надёжно классифицируемые как квазары, зелёным - объекты, с высокой вероятностью являющиеся 48 квазарами. Отношения цвета объектов (r-z) и (w1-w2) и расстояния dist1. 3.4 Красным выделены квазары, имеющие спектроскопию SDSS, синим - объекты, надёжно классифицируемые как квазары, зелёным - объекты, с высокой вероятностью являющиеся квазарами. Фиолетовым выделены объекты, имеющие параллакс на уровне > 5σ по данным астрометрического обзора GAIA. . . . 503.5 Пример графиков среднеполосных распределений энергии двух 50 Сравнение фотометрических красных смещений $z_{\rm ph}$ квазаров, 3.6 полученных с помощью программного инструмента ZEBRA, со спектроскопическими красными смещениями z_{sp} квазаров, взятых из обзора SDSS. Точность определения фотометрического красного смещения составляет $\sigma_{\rm NMAD} < 0.015$, процент отклоняющихся значений $\Delta z/(1+z) > 5. * \sigma_{\text{NMAD}} \sim 2.9\%$ во всём диапазоне красных смещений. Пунктирная линия показывает линию равных 53 фотометрических и спектральных красных смещений. Пример спектров квазаров на 3 < z < 4, снятых на БТА 3.7 (спектрографы SCORPIO [96] и SCORPIO-2 [97], спектроскопия 54 Пример спектров квазаров на 4 < z < 5, снятых на БТА 3.8 (спектрографы SCORPIO [96] и SCORPIO-2 [97], спектроскопия 55 3.9 Моделирование полноты отбора квазаров по среднеполосным фотометрическим данным. Цветовая градация от белого до черного указывает на уровни полноты 95, 80, 50, 30 и 10 процентов соответственно. 55

3.10	Отбор квазаров на красном смещени и $z<2.2$ по критериям	
	u-g и $W1-W2$. Синим и зелёным отмечены известные в поле	
	квазары, а также квазары, отобранные вручную по	
	среднеполосным спектральным распределениям энергии.	
	Полнота отбора объектов на $0 < z < 1$ равна 73%, на $1 < z < 2.2$	
	равна 92% до $r_{SDSS} = 22.5^m$	56
4.1	Зависимость абсолютной звездной величины квазаров на длине	
	волны $145nm$ от красного смещения	59
4.2	Зависимость пространственной плотности квазаров от красного	
	смещения, полученная по нашим данным, в сравнении с	
	данными обзоров COMBO-17 [46], COSMOS [25], ALHAMBRA	
	[24], Stripe-82 [61], SDSS-DR14 [53]	60
4.3	Зависимость пространственной плотности квазаров от красного	
	смещения, построенная для разных диапазонов светимости	61
4.4	Дифференциальная функция светимости квазаров, полученная	
	по нашим данным, в сравнении с данными обзора СОМВО-17 [46]	61

Список таблиц

1	Набор широкополосных и среднеполосных фильтров 1-м	
	телескопа Шмидта БАО НАН. Эффективная длина волны,	
	FWHM, предельная звездная величина, измеренная на уровне	
	сигнал/шум ~ 5	4
2	Описание столбцов каталога квазаров	8
3	Каталог квазаров	5

Приложение А

Каталог квазаров

В таблице приведен каталог квазаров со следующими данными:

- Number порядковый номер квазара;
- RA прямое восхождение в градусной мере;

Dec - склонение;

 Z_{ph} - среднеполосное фотометрическое красное смещение;

 Z_{sp} - спектроскопическое красное смещение;

 r_{SDSS} - звездная величина в фильтре r_{SDSS} .

		-			
Number	RA	Dec	z_{ph}	z_{sp}	r_{SDSS}
1	147.41822815	47.54772949	1.767	1.733	22.3
2	148.43431091	47.54790878	1.49	1.499	21.2
3	147.45036316	47.552948	1.894	-	20.8
4	147.40470886	47.55477905	1.093	-	21.1
5	148.49195862	47.55570221	4.112	-	21.1
6	147.69096375	47.56656265	2.362	2.381	20.6
7	148.18107605	47.57317734	2.312	-	22.4
8	147.58110046	47.57328033	1.568	1.604	21.0
9	147.97167969	47.5771904	0.866	0.867	20.0
10	148.35119629	47.58052826	1.967	1.991	21.9
11	147.81419373	47.5952034	0.103	_	22.1
12	148.16004944	47.59910583	1.278	_	21.8
13	147.96180725	47.60040283	1.781	_	22.4
14	147.66323853	47.60836411	2.065	2.11	20.9
15	148.17225647	47.60966873	0.964	_	21.1
16	148.39543152	47.61686707	1.342	1.346	20.8
17	147.89508057	47.61854935	2.569	-	21.3
18	148.32376099	47.62466049	2.495	-	21.9
19	147.80101013	47.63013458	0.52	0.514	20.1

Таблица 3 — Каталог квазаров

20	147.82208252	47.63890839	3.49	-	22.2
21	147.56517029	47.64699173	1.36	1.359	20.6
22	148.28416443	47.64984894	2.45	-	21.4
23	147.86967468	47.65219498	3.145	-	21.8
24	147.82969666	47.65316391	1.23	-	21.7
25	148.53353882	47.6526413	5.16	-	22.4
26	148.10865784	47.65499496	1.05	-	21.1
27	148.13499451	47.65550995	1.53	1.537	21.3
28	147.48699951	47.66571045	1.53	-	21.1
29	148.22587585	47.6700058	1.467	-	22.1
30	147.70739746	47.68877411	1.494	1.499	21.7
31	147.94186401	47.69036484	1.271	1.232	21.0
32	148.17675781	47.69179153	1.36	-	21.7
33	148.42417908	47.69794464	1.041	-	22.3
34	147.49049377	47.70000839	3.166	-	21.8
35	148.52081299	47.70325851	2.696	-	21.4
36	147.93907166	47.70621872	1.686	1.703	19.8
37	147.74119568	47.70682907	3.468	-	22.3
38	147.98136902	47.72392654	3.043	-	20.7
39	147.682724	47.73031998	2.659	-	22.3
40	148.3941803	47.73129654	1.36	-	22.4
41	148.4513092	47.7338562	2.866	-	21.8
42	148.43040466	47.73472214	3.064	-	21.5
43	147.38865662	47.73618698	1.23	-	21.6
44	147.97393799	47.73997498	1.09	-	22.3
45	147.70509338	47.74195099	2.641	-	22.4
46	147.55731201	47.74187088	0.61	0.552	20.7
47	147.48345947	47.74294662	0.847	0.866	19.9
48	147.44551086	47.74375916	2.379	-	22.0
49	148.50111389	47.7457428	0.96	-	21.3
50	148.10914612	47.75536728	2.95	-	21.0
51	147.94645691	47.75791168	1.49	1.465	20.6
52	147.82191467	47.75928879	1.568	1.6	21.2
53	147.61270142	47.76327896	2.516	-	22.3

54	148.09402466	47.76534653	2.885	-	21.0
55	148.46383667	47.76744843	3.52	-	22.4
56	148.07398987	47.77305984	1.23	1.177	19.9
57	148.18371582	47.77328873	1.54	1.586	20.6
58	147.57609558	47.77766037	1.36	-	21.8
59	147.55047607	47.78274155	1.135	-	22.4
60	147.63633728	47.78596878	0.96	1.012	19.5
61	148.16944885	47.78868866	0.316	-	21.2
62	148.28794861	47.79408264	1.072	-	22.3
63	147.9276886	47.79471207	1.25	-	21.3
64	148.17877197	47.79701996	2.85	-	20.7
65	148.36433411	47.79979706	0.483	-	22.0
66	147.48866272	47.80459595	1.74	-	22.1
67	147.56509399	47.81421661	1.53	-	21.1
68	148.13206482	47.8311615	2.68	-	20.9
69	148.32157898	47.84247589	3.509	-	22.3
70	148.48765564	47.84700012	1.34	-	21.2
71	148.39118958	47.84833527	2.345	-	21.9
72	148.01098633	47.85106277	1.39	-	20.6
73	148.02157593	47.8511734	2.678	-	21.7
74	148.25169373	47.85073853	3.401	-	22.4
75	148.39924622	47.85071182	1.88	1.907	20.4
76	148.28779602	47.85368729	0.2	0.202	17.7
77	148.53678894	47.85461426	3.104	-	22.3
78	147.53405762	47.85738373	1.09	-	22.1
79	148.1512146	47.86292648	1.178	1.181	19.4
80	147.53404236	47.86289215	1.49	-	22.2
81	148.28837585	47.86325836	1.431	-	22.0
82	148.40988159	47.86354065	1.093	-	21.9
83	148.23077393	47.86645889	2.151	-	22.3
84	147.68206787	47.86737823	1.48	-	22.1
85	147.41235352	47.8715744	2.569	2.596	21.3
86	147.74136353	47.87747955	1.48	-	21.3
87	148.33580017	47.87884903	2.659	-	22.4

	-				
88	147.66891479	47.88070679	0.838	0.943	20.4
89	148.47982788	47.8844223	2.362	-	22.1
90	148.10313416	47.88604355	2.88	-	21.8
91	148.45735168	47.88512802	3.336	-	22.4
92	148.23208618	47.89131927	0.536	-	21.3
93	148.49414063	47.8906517	2.68	-	20.8
94	147.41841125	47.8973465	3.401	-	21.0
95	148.35516357	47.90182114	2.48	-	22.4
96	148.36981201	47.90540695	3.49	-	22.1
97	148.02470398	47.90810394	1.753	1.746	19.6
98	148.11401367	47.91307068	1.53	-	21.4
99	147.55789185	47.91408157	3.401	-	21.4
100	147.82064819	47.91844177	1.23	-	22.4
101	147.93029785	47.92416763	1.88	1.892	21.6
102	147.72193909	47.93468094	3.064	-	21.2
103	147.55516052	47.93584061	1.156	-	20.7
104	147.42550659	47.93743515	2.733	-	20.7
105	148.52139282	47.93759918	2.151	-	21.9
106	147.53514099	47.94161606	1.542	-	21.7
107	147.84387207	47.94285965	3.9	-	22.3
108	148.22735596	47.94686127	0.79	0.813	20.5
109	148.50497437	47.94623566	1.103	-	21.2
110	147.49702454	47.95464325	1.103	1.125	21.0
111	148.40809631	47.95957947	1.55	1.602	22.0
112	147.85267639	47.96673965	2.23	2.238	19.2
113	147.65959167	47.96978378	1.28	-	21.2
114	147.94595337	47.97438431	0.544	-	21.8
115	147.41098022	47.97580719	1.406	1.358	20.0
116	148.03018188	47.97942734	1.39	1.405	20.0
117	147.90660095	47.98106384	1.455	-	21.0
118	148.27989197	47.98493576	1.542	1.565	20.3
119	148.18296814	47.98548126	1.001	-	22.5
120	147.71661377	47.986763	2.733	-	18.7
121	147.90408325	47.98803329	2.789	_	22.1

	122	148.27429199	47.98922729	2.362	-	22.0
	123	148.28511047	47.98936844	2.481	2.519	20.2
	124	148.23501587	47.99755859	2.328	-	22.3
	125	147.93267822	47.99844742	3.084	-	21.9
	126	148.146698	48.0031395	2.85	-	20.9
	127	148.00836182	48.01059341	1.051	1.09	19.0
	128	147.6978302	48.01319504	1.713	1.74	17.2
	129	147.71330261	48.0138588	3.423	-	21.6
	130	148.50770569	48.02123642	2.33	-	20.6
	131	147.58850098	48.02440643	2.659	-	22.4
	132	148.45297241	48.03294373	2.72	-	21.4
	133	148.02882385	48.03954697	1.135	-	21.0
	134	147.84416199	48.0509758	2.516	2.532	20.7
	135	148.32579041	48.05277634	0.951	-	22.2
	136	147.81755066	48.05479813	2.345	-	21.1
	137	148.27415466	48.05434418	2.885	-	20.7
	138	147.65974426	48.05767441	1.08	-	21.1
	139	148.21539307	48.05929947	1.542	1.544	21.6
	140	147.48988342	48.06177521	1.35	-	21.0
	141	148.22834778	48.06435013	3.696	-	21.8
	142	148.06973267	48.06655884	3.49	-	21.9
	143	148.55470276	48.06562424	2.714	-	20.8
	144	147.53918457	48.06681824	2.714	-	22.4
	145	148.36038208	48.06887054	1.53	1.54	20.3
	146	148.16854858	48.07375336	1.2	1.253	20.1
	147	147.37008667	48.07266235	2.733	-	21.3
	148	148.24754333	48.07544708	2.362	-	22.1
	149	148.52461243	48.07624435	2.885	-	20.5
	150	148.26019287	48.08020782	2.587	-	20.3
	151	147.72015381	48.08140945	0.639	-	21.9
	152	148.03816223	48.08322906	0.198	-	22.0
	153	147.79905701	48.08403015	1.781	-	22.2
	154	148.12846375	48.08427048	0.696	-	21.3
	155	147.48609924	48.09174347	1.301	_	22.4
2						

156	148.0266571	48.10140991	1.62	1.608	20.2
157	148.33250427	48.1074791	0.697	-	20.7
158	147.66822815	48.1184845	0.88	-	22.0
159	147.9588623	48.13396072	1.767	1.741	21.3
160	148.38813782	48.13441467	2.7	-	21.2
161	147.89189148	48.13965988	2.75	-	22.1
162	147.4263916	48.14057922	3.535	-	22.0
163	148.19444275	48.1430397	1.65	-	21.9
164	148.24557495	48.14389801	2.605	2.603	20.5
165	147.89772034	48.15088272	1.312	1.305	18.8
166	148.17951965	48.15148544	1.146	0.989	21.9
167	147.61959839	48.16345978	2.9	-	21.3
168	147.38699341	48.16847992	3.003	-	21.4
169	148.38301086	48.17059326	3.45	-	22.4
170	147.69239807	48.17218018	2.72	-	22.0
171	148.06472778	48.17584991	0.96	-	21.4
172	147.95883179	48.17712784	3.05	-	22.5
173	148.07432556	48.17821121	2.714	-	21.7
174	147.5859375	48.18125916	1.05	-	22.3
175	148.29399109	48.19260406	1.2	-	21.8
176	147.39411926	48.19703674	3.445	-	22.0
177	147.60467529	48.20267105	1.312	1.344	20.1
178	147.48654175	48.21255112	0.7	-	20.9
179	148.45220947	48.22049713	2.75	-	21.4
180	148.39871216	48.22758484	2.9	-	22.0
181	148.36231995	48.23505402	0.885	-	21.8
182	148.53440857	48.23908234	2.279	-	22.3
183	148.07925415	48.24320221	2.733	-	21.5
184	147.70874023	48.24469757	0.894	-	21.4
185	147.92549133	48.24559021	1.2	1.222	18.1
186	148.07337952	48.24556351	1.45	-	20.8
187	148.17308044	48.24732208	1.23	1.21	20.9
188	148.53736877	48.25382233	3.52	-	21.1
189	147.38195801	48.25788879	1.48	-	21.6

190	147.42703247	48.26948547	2.9	-	21.3
191	147.84928894	48.27709579	1.467	-	22.4
192	148.41786194	48.30353546	3.003	-	21.3
193	148.46525574	48.30362701	2.312	2.284	21.3
194	147.61985779	48.30546951	0.689	-	21.8
195	148.04771423	48.30599594	1.809	1.819	20.0
196	147.59638977	48.30947495	2.7	2.445	22.0
197	148.51925659	48.31209564	1.953	-	21.6
198	147.79881287	48.31401443	1.371	-	22.0
199	147.6709137	48.31761932	1.23	1.207	20.9
200	147.43865967	48.31761551	1.467	-	22.3
201	148.32453918	48.32192612	2.85	-	21.5
202	147.74411011	48.32530594	3.512	-	21.7
203	147.65164185	48.32629013	2.924	-	22.1
204	148.55241394	48.3277359	2.95	-	21.2
205	148.09312439	48.33240509	2.379	-	21.9
206	147.46728516	48.33640289	1.795	1.811	19.5
207	148.30465698	48.34255219	2.49	-	21.9
208	146.72605896	47.53313065	1.36	1.332	20.4
209	146.88604736	47.53382111	2.246	2.227	21.7
210	147.02075195	47.53964996	1.699	1.717	18.3
211	147.44764709	47.53858566	1.9	-	21.4
212	146.73371887	47.54293823	2.963	-	21.7
213	147.09432983	47.54309464	1.397	-	20.9
214	146.54350281	47.54418945	2.905	-	21.7
215	146.66494751	47.54785156	4.086	-	21.6
216	146.92437744	47.54845047	2.042	1.988	21.2
217	146.91645813	47.55835342	1.146	-	21.7
218	147.25920105	47.55968857	2.1	-	21.9
219	146.99284363	47.56856155	1.1	0.983	21.3
220	147.12541199	47.57131958	2.72	-	22.4
221	146.82182312	47.57156372	0.706	0.662	19.0
222	146.5730896	47.57337952	2.92	-	21.4
223	146.80477905	47.58016968	0.79	0.839	22.3

224	146.5350647	47.58010483	2.43	-	21.5
225	146.51849365	47.58626175	0.144	-	19.2
226	146.82725525	47.59352493	3.125	-	21.5
227	147.15266418	47.60260391	2.75	-	21.9
228	146.65257263	47.60845947	1.443	-	21.4
229	146.55450439	47.61278534	1.74	1.764	21.8
230	146.51109314	47.61470795	1.278	-	22.2
231	147.06190491	47.61587524	0.61	0.621	20.8
232	147.35401917	47.61814499	3.743	-	21.7
233	147.19328308	47.62573242	4.189	-	22.1
234	147.15774536	47.63524246	0.923	-	20.5
235	146.59765625	47.63748932	1.53	1.519	21.7
236	146.99572754	47.65221405	0.79	0.81	19.6
237	146.49285889	47.65249634	2.43	-	21.6
238	147.20542908	47.6550293	2.885	2.916	20.9
239	147.07357788	47.66088867	1.88	1.831	19.2
240	146.48835754	47.66032791	2.66	-	22.0
241	146.61634827	47.66258621	2.49	-	22.3
242	147.35423279	47.66399002	1.031	-	22.3
243	147.24232483	47.66444016	0.544	-	22.4
244	146.67286682	47.66487503	2.145	2.169	22.3
245	146.51727295	47.69222641	1.9	1.932	20.4
246	147.02488708	47.69846344	2.295	-	22.4
247	146.80712891	47.69999313	2.3	-	21.2
248	146.46421814	47.6999054	2.733	-	21.2
249	146.50379944	47.7053299	0.316	-	21.4
250	147.27705383	47.70700073	2.551	-	21.8
251	147.1217804	47.70761871	0.991	-	20.5
252	146.47541809	47.70746613	5.36	-	22.1
253	146.87402344	47.71587753	2.263	-	21.5
254	146.7809906	47.71801376	1.23	-	20.9
255	146.59796143	47.73508072	0.521	-	22.3
256	146.56222534	47.73683929	2.4	-	21.1
257	146.96640015	47.74521637	2.49	-	21.9

258	146.43205261	47.74705124	1.072	-	21.8
259	146.98660278	47.74983215	2.464	-	21.2
260	146.61576843	47.75040817	1.866	-	21.4
261	146.46270752	47.7558136	2.9	-	20.9
262	146.5458374	47.75864792	2.516	2.551	20.5
263	146.85978699	47.76316071	2.752	2.786	20.4
264	146.90061951	47.76600266	1.031	1.056	20.2
265	147.16444397	47.77791595	3.936	-	22.1
266	146.56846619	47.77833557	1.156	-	21.5
267	147.17941284	47.77998734	2.312	2.355	22.0
268	146.82800293	47.78177261	2.447	-	20.6
269	147.26483154	47.78173447	0.22	0.215	18.6
270	146.81399536	47.80197906	1.371	-	21.8
271	146.9969635	47.8045845	1.88	1.86	20.1
272	146.91134644	47.8086586	1.278	-	22.2
273	146.85452271	47.81259918	1.103	1.135	21.2
274	146.55181885	47.81262207	1.041	-	20.6
275	147.23420715	47.81491089	2.82	-	20.8
276	147.27328491	47.82182312	5.027	-	22.4
277	146.46315002	47.82852173	3.145	-	22.1
278	146.73828125	47.83226395	5.16	-	22.4
279	146.92253113	47.84012985	2.9	-	21.4
280	146.80949402	47.84137726	1.431	-	22.4
281	146.94050598	47.85558319	2.22	2.156	20.0
282	147.13781738	47.85889435	1.211	1.257	20.8
283	147.5344696	47.86279297	1.114	-	22.2
284	147.15507507	47.86423874	0.567	-	21.8
285	146.79460144	47.8704834	2.5	-	22.5
286	146.48986816	47.86997986	2.379	2.404	20.7
287	146.59786987	47.88381958	1.05	1.003	19.0
288	146.99539185	47.88671494	1.072	1.112	19.8
289	146.69345093	47.90324783	1.031	-	22.2
290	146.88375854	47.90388107	2.362	2.392	20.0
291	146.71179199	47.9047699	2.379	2.394	20.7

292	147.24168396	47.90476227	1.072	1.33	20.7
293	147.14399719	47.90681839	2.295	-	22.4
294	146.88528442	47.90755081	1.24	-	21.2
295	146.50564575	47.91202545	0.79	-	20.8
296	147.02799988	47.91743469	1.88	-	22.5
297	146.89283752	47.92619324	1.48	1.523	18.4
298	147.08476257	47.92803574	2.447	-	21.5
299	146.69628906	47.93764877	1.492	1.507	19.4
300	146.4874115	47.94758987	2.6	-	20.8
301	147.14376831	47.9498291	2.516	-	22.0
302	146.53244019	47.95273209	1.767	-	22.3
303	147.12825012	47.95517349	2.696	-	21.7
304	146.68028259	47.96297836	2.295	2.307	20.4
305	147.09423828	47.96380615	2.49	-	21.5
306	146.42428589	47.96619034	2.905	-	21.5
307	147.06495667	47.99316025	1.74	-	21.9
308	146.89653015	48.00039673	2.7	-	21.4
309	146.78968811	48.00118637	1.726	-	21.6
310	147.24087524	48.00683975	1.36	-	20.3
311	146.59248352	48.0133934	3.104	-	21.8
312	146.46369934	48.01678085	1.88	1.913	21.6
313	147.13293457	48.01995087	1.5	-	21.4
314	147.07270813	48.02375412	2.28	-	21.8
315	146.54081726	48.02500534	4.215	-	22.5
316	146.95730591	48.03840256	1.09	-	21.5
317	146.72125244	48.03980255	0.655	0.653	20.3
318	146.54971313	48.04105377	1.36	-	22.4
319	147.0448761	48.06835175	2.847	-	21.1
320	146.57296753	48.07575607	1.506	1.42	20.3
321	146.57128906	48.07794952	1.41	-	21.9
322	147.30345154	48.08126831	0.483	-	22.3
323	146.81065369	48.08977127	2.7	-	21.7
324	146.94926453	48.09137726	0.468	0.419	22.3
325	147.30236816	48.09103394	4.189	-	22.5

326	146.65625	48.09156418	4.061	-	21.9
327	146.89974976	48.09869766	0.7	0.762	19.6
328	146.96899414	48.10082245	1.781	-	22.2
329	147.07269287	48.10211182	2.379	-	22.1
330	146.62023926	48.11211014	2.551	-	21.2
331	146.98934937	48.1226387	1.278	-	22.3
332	147.3056488	48.12605667	2.696	-	21.1
333	146.53320313	48.13019943	1.324	1.337	20.7
334	146.81173706	48.14138412	2.48	-	21.7
335	146.489151	48.14506149	3.104	-	22.5
336	146.96435547	48.15104675	0.59	-	22.3
337	146.91207886	48.15343475	1.114	1.354	21.3
338	146.52545166	48.16159439	0.454	-	19.3
339	146.97117615	48.1663475	2.22	2.171	19.0
340	146.78111267	48.16659164	2.9	-	21.2
341	146.86555481	48.1673317	3.961	-	22.1
342	146.77877808	48.17069626	0.397	-	21.5
343	146.79574585	48.18292999	2.28	-	21.4
344	146.76553345	48.18315887	1.9	-	22.0
345	146.62844849	48.18742752	2.714	-	21.7
346	146.65615845	48.18843079	2.464	-	22.3
347	147.0065918	48.18962479	1.62	-	21.0
348	147.29225159	48.19420242	1.359	1.321	21.2
349	146.71711731	48.19517899	2.696	2.655	22.0
350	146.57525635	48.19627762	2.29	-	21.5
351	147.35429382	48.20055008	1.335	-	21.1
352	146.49528503	48.2013092	0.847	-	22.0
353	146.60641479	48.20689011	2.379	-	22.4
354	146.80683899	48.20894623	2.7	-	21.4
355	146.77540588	48.21324158	1.74	-	21.5
356	146.65943909	48.21511841	1.53	1.516	21.1
357	147.12275696	48.21773911	2.49	-	21.7
358	146.69277954	48.22593307	2.53	-	20.9
359	146.90255737	48.22743988	2.1	2.071	21.3

360	147.06562805	48.22867584	2.733	-	20.8
361	146.7051239	48.24193573	2.28	-	21.8
362	147.2091217	48.24202728	2.119	-	22.0
363	146.54333496	48.24424362	2.789	-	22.2
364	146.59197998	48.24489212	1.88	1.89	21.4
365	147.37640381	48.24698257	2.3	-	22.1
366	147.23678589	48.25488281	1.781	-	21.3
367	147.32460022	48.25499725	1.699	1.682	19.3
368	147.18771362	48.25732803	2.8	-	20.8
369	146.72770691	48.26716232	2.166	-	21.8
370	146.7824707	48.27054596	2.412	2.436	18.8
371	146.59172058	48.28476334	2.696	-	21.8
372	146.49545288	48.28568268	1.823	-	21.9
373	147.02352905	48.29708099	1.866	-	22.4
374	147.32299805	48.30557251	2.752	-	20.7
375	146.95489502	48.31826782	0.43	0.404	20.0
376	146.55247498	48.32100677	2.53	-	22.0
377	146.9138031	48.32883453	0.88	-	21.4
378	147.02276611	48.32962036	0.875	-	21.0
379	146.67059326	48.3300705	0.43	0.433	19.2
380	147.46774292	48.33662415	1.809	1.811	19.6
381	147.13050842	48.34101868	2.48	-	21.7
382	147.44567871	48.34030151	2.312	-	21.5
383	148.05194092	46.87859726	2.412	2.422	20.8
384	147.68405151	46.88222885	0.7	0.676	20.7
385	148.51220703	46.88180161	1.36	1.304	21.8
386	148.22650146	46.88467026	2.49	-	22.1
387	148.13075256	46.89383316	2.587	-	22.2
388	148.36233521	46.89732361	2.7	-	21.9
389	148.35667419	46.89874268	2.7	-	20.5
390	147.91835022	46.90364075	2.28	-	21.7
391	148.28082275	46.90798569	1.953	1.953	21.0
392	148.10144043	46.91031647	4.454	-	21.1
393	147.93205261	46.91160202	3.271	-	22.1

394	147.80970764	46.91571045	1.9	1.955	20.9
395	148.26248169	46.91765594	2.1	-	21.5
396	148.36042786	46.9260788	2.7	-	22.2
397	148.26867676	46.92705154	2.28	-	22.4
398	148.13545227	46.93138123	2.7	-	21.7
399	148.17008972	46.93214417	1.9	1.945	21.3
400	147.88803101	46.93809128	1.606	-	22.0
401	148.07476807	46.93925095	2.499	-	21.1
402	147.97067261	46.93993378	3.31	-	22.3
403	148.36315918	46.94234467	2.866	-	21.0
404	147.48522949	46.94325256	4.011	-	22.3
405	147.61679077	46.9490509	3.52	-	22.0
406	147.82107544	46.95129013	1.3	-	21.1
407	148.49220276	46.95088577	3.58	-	21.9
408	148.31132507	46.95373917	1.383	-	22.3
409	147.6350708	46.9562912	3.11	-	21.6
410	147.50665283	46.97987366	1.4	-	20.1
411	148.24937439	46.98020554	1.75	-	20.8
412	147.43760681	46.99517822	1.88	-	22.2
413	148.42105103	46.99786758	3.558	-	21.8
414	147.58648682	47.01044083	1.997	-	22.3
415	147.89350891	47.01289368	1.9	1.989	20.9
416	147.88633728	47.01376343	2.6	-	21.9
417	148.31948853	47.02190018	3.58	-	21.9
418	148.42350769	47.02159882	1.781	-	22.5
419	148.03840637	47.02323532	3.166	-	21.0
420	148.18505859	47.03649902	1.767	1.814	21.2
421	147.70825195	47.04785156	3.379	-	21.2
422	148.30899048	47.0499382	1.672	1.678	21.6
423	147.44316101	47.05501175	4.997	-	21.9
424	148.10223389	47.0588913	0.836	0.83	20.8
425	147.85336304	47.05965042	2.714	-	20.7
426	147.94012451	47.06072617	1.103	-	22.5
427	147.45697021	47.06554794	2.35	2.327	20.6

428	147.91470337	47.07112503	1.371	-	22.3
429	147.77442932	47.07328415	2.847	-	22.0
430	148.4493103	47.07274246	0.425	-	22.3
431	147.95869446	47.08643723	1.05	-	21.5
432	148.26599121	47.08614349	3.72	-	22.2
433	148.43138123	47.11448669	1.568	-	22.0
434	147.90342712	47.11720657	2.847	2.83	20.6
435	148.27572632	47.11764526	2.8	-	20.7
436	147.90559387	47.14261627	2.7	2.595	21.5
437	147.73498535	47.14381409	2.551	2.587	21.5
438	148.09500122	47.14693069	2.9	-	21.5
439	147.85723877	47.15044022	2.847	-	21.8
440	148.1335907	47.15589142	3.767	-	20.8
441	147.96580505	47.16913986	0.802	-	20.3
442	148.07110596	47.17119598	0.376	0.407	21.5
443	147.45181274	47.17978287	1.301	1.294	20.4
444	148.10264587	47.18330383	2.042	2.094	19.1
445	147.77156067	47.18727875	2.696	-	22.0
446	148.26739502	47.18724442	1.967	-	22.4
447	147.65583801	47.18878937	1.16	-	22.5
448	147.96749878	47.19525528	0.88	0.88	20.8
449	148.07542419	47.19805527	1.53	1.617	22.2
450	148.34597778	47.2004509	2.79	-	21.2
451	148.38674927	47.20439529	0.96	1.015	20.8
452	148.46655273	47.20415878	1.659	-	21.6
453	147.6603241	47.20913696	1.222	1.175	19.2
454	147.53581238	47.21323013	1.14	-	22.3
455	148.16755676	47.21350098	2.551	-	22.0
456	148.42276001	47.21545029	3.673	-	20.7
457	148.17988586	47.2265358	3.512	-	21.9
458	147.46472168	47.23885345	0.875	-	19.8
459	147.75546265	47.24161911	1.95	-	22.2
460	148.24539185	47.24235535	3.166	-	21.0
461	147.41766357	47.25135422	1.7		22.0

462	147.53993225	47.25187302	0.067	-	22.4
463	147.70663452	47.25684738	0.714	0.716	19.4
464	147.53643799	47.2588501	3.673	-	22.4
465	147.66545105	47.2599678	1.418	-	21.4
466	148.05957031	47.26707458	1.967	1.974	19.9
467	148.3769989	47.27210236	3.58	-	21.0
468	148.07003784	47.28247452	0.43	0.473	19.1
469	147.50917053	47.2861557	2.379	2.392	19.2
470	147.89796448	47.29136276	2.119	-	22.4
471	148.14030457	47.29495621	4.189	-	21.0
472	147.45985413	47.29490662	1.05	-	20.7
473	147.95565796	47.30092239	2.012	1.99	20.3
474	147.63551331	47.30148315	3.104	3.077	20.8
475	147.68525696	47.30433273	1.633	-	21.3
476	147.49183655	47.30858994	0.369	-	21.6
477	148.38227844	47.31126022	2.733	-	21.6
478	148.34024048	47.31184769	1.011	0.957	20.8
479	148.27627563	47.31333923	0.68	0.801	21.9
480	147.69160461	47.31406403	2.866	-	21.0
481	147.69935608	47.31728745	1.222	1.193	20.8
482	147.80682373	47.31798553	1.38	-	20.7
483	147.97770691	47.32074738	3.815	-	22.1
484	148.16249084	47.32053757	0.404	-	19.0
485	148.5135498	47.31937408	4.112	-	22.4
486	147.99487305	47.32295609	3.767	-	21.9
487	148.25912476	47.32462692	1.041	0.996	20.6
488	148.44424438	47.32620239	0.79	0.786	22.0
489	147.49084473	47.33885193	3.93	-	21.8
490	147.53138733	47.33942032	4.086	-	21.7
491	148.47171021	47.33911133	3.49	3.469	20.6
492	148.05126953	47.34246063	0.61	0.621	19.7
493	148.19047546	47.34330368	1.406	1.605	20.4
494	148.16964722	47.34409332	1.53	1.532	20.5
495	147.57310486	47.34949875	2.295	2.309	20.7

496	147.98995972	47.3511734	1.606	1.598	17.5
497	148.44636536	47.36584091	1.467	1.504	21.4
498	148.47369385	47.37093735	1.53	_	20.9
499	148.18551636	47.37324142	2.963	-	22.0
500	147.78848267	47.37570572	1.837	1.902	21.1
501	148.38633728	47.38016891	3.31	-	21.8
502	147.92506409	47.38393784	1.23	1.267	20.5
503	147.51625061	47.38352966	2.534	-	21.8
504	147.44419861	47.38599777	1.031	-	22.2
505	148.34599304	47.3871727	2.66	-	22.2
506	148.33352661	47.39081955	1.093	1.12	19.9
507	147.87619019	47.39490509	2.012	2.129	21.9
508	147.47329712	47.3975563	0.383	0.395	18.2
509	147.72167969	47.39895248	2.7	_	22.0
510	147.64686584	47.40706635	2.9	-	21.3
511	147.64453125	47.40789413	2.587	_	22.4
512	147.88812256	47.41802216	0.802	-	21.6
513	147.57223511	47.42337799	2.379	_	22.3
514	147.46105957	47.42345428	1.646	-	22.4
515	148.46463013	47.42298126	0.425	-	21.3
516	147.83636475	47.42565918	1.9	1.908	21.1
517	148.11743164	47.43149567	0.714	0.691	19.0
518	147.7162323	47.43388748	0.74	0.719	19.8
519	148.41238403	47.43717957	2.27	-	22.1
520	148.35406494	47.44592285	1.289	-	22.3
521	148.2562561	47.44908905	0.96	0.944	20.1
522	147.69020081	47.45588303	3.912	-	22.1
523	148.04174805	47.45821381	2.885	-	21.3
524	147.50544739	47.4610405	2.534	2.59	21.3
525	148.32420349	47.46360016	3.863	-	21.6
526	148.03375244	47.46987534	1.9	1.938	21.6
527	148.42269897	47.46963501	1.619	_	22.2
528	147.62336731	47.47967148	0.793	0.908	21.2
529	148.02705383	47.48390198	2.789	_	22.0

530	147.9271698	47.48995209	3.512	-	21.6
531	147.95959473	47.49736023	2.623	-	22.1
532	148.01673889	47.49861526	0.411	-	20.0
533	148.02513123	47.50568771	1.289	1.323	20.2
534	147.76255798	47.50600433	3.401	-	22.0
535	147.40299988	47.50709915	2.027	2.05	21.6
536	148.37756348	47.50896454	3.815	-	21.8
537	148.34745789	47.51113892	1.23	-	20.9
538	148.4566803	47.52682877	3.72	-	21.6
539	148.00814819	47.53055191	3.064	-	21.4
540	148.49835205	47.53151321	3.58	-	21.0
541	147.74084473	47.53321075	2.412	-	21.5
542	148.4239502	47.53742218	1.371	-	22.4
543	148.35441589	47.5449295	2.866	-	20.8
544	147.41845703	47.54733276	1.74	1.733	22.4
545	147.40515137	47.55480576	1.49	-	21.2
546	148.47479248	47.57461548	2.499	-	22.2
547	147.81616211	47.59788132	2.641	-	22.5
548	146.61886597	46.87356949	2.808	-	22.3
549	146.54385376	46.87437439	2.963	-	22.1
550	147.34440613	46.8750267	2.516	-	22.4
551	147.08087158	46.87854004	2.569	2.551	20.3
552	147.23446655	46.88235474	1.09	1.059	19.3
553	146.48051453	46.88329697	2.714	-	21.6
554	146.73516846	46.88882065	0.714	0.721	21.3
555	147.0489502	46.8903389	0.631	-	20.8
556	146.62841797	46.89113617	0.951	-	20.6
557	146.93119812	46.89318848	1.36	1.406	20.6
558	147.31735229	46.89291	3.379	-	21.9
559	146.83576965	46.89663315	0.7	0.691	20.1
560	146.70678711	46.90007401	1.32	-	21.7
561	147.35458374	46.90309143	2.027	2.073	19.9
562	146.56719971	46.91033936	1.9	-	21.7
563	146.97476196	46.91894913	2.534	2.576	20.7

564	147.31140137	46.91899872	1.837	-	22.2
565	146.61296082	46.92076492	2.866	-	22.1
566	147.23181152	46.92221069	1.492	1.541	21.7
567	146.66438293	46.92494202	1.222	1.34	21.4
568	147.34346008	46.9260788	2.1	2.098	21.1
569	146.49110413	46.94465256	3.512	-	22.0
570	146.55186462	46.95103455	1.699	1.803	20.2
571	147.23001099	46.96237183	0.79	0.788	20.3
572	147.12129211	46.96490097	0.847	-	22.3
573	146.98948669	46.96778107	1.619	1.651	20.4
574	146.88600159	46.96947098	3.468	-	21.8
575	146.85501099	46.97328186	1.699	-	22.2
576	146.82191467	46.97582626	1.09	1.137	20.9
577	147.50697327	46.97968292	1.36	-	20.3
578	147.27622986	46.9942131	1.809	1.729	20.4
579	147.20202637	47.00271225	2.827	-	22.1
580	146.52099609	47.00735474	3.064	-	21.0
581	146.82519531	47.01838684	4.96	-	21.5
582	146.74281311	47.01863861	3.72	-	21.7
583	146.69007874	47.01937103	3.003	-	21.1
584	146.99197388	47.03318405	2.75	-	21.5
585	146.44911194	47.03508759	4.537	-	21.5
586	146.90220642	47.03978348	2.49	-	21.5
587	146.83041382	47.03990936	1.05	-	20.1
588	147.1585083	47.04425812	2.279	-	22.2
589	146.86593628	47.05146408	1.36	-	22.0
590	146.53959656	47.05365753	1.837	-	20.6
591	147.24028015	47.05631638	1.74	-	21.6
592	147.07559204	47.06164169	2.345	-	22.3
593	146.66835022	47.06949234	1.23	1.276	19.5
594	147.2855835	47.06980133	1.9	-	21.5
595	146.95707703	47.07069016	3.468	-	22.4
596	146.93554688	47.07326508	1.49	-	21.6
597	146.94570923	47.07924652	3.535	-	21.0

598	147.24731445	47.08406067	2.49	-	21.5
599	146.81503296	47.08692932	1.335	1.363	20.3
600	146.97114563	47.08795929	1.74	1.749	20.4
601	147.17320251	47.11296463	1.568	-	21.9
602	146.84954834	47.11558914	2.027	2.026	20.0
603	146.82403564	47.11709213	2.246	2.256	22.4
604	146.61680603	47.12077332	1.347	1.381	18.3
605	146.59025574	47.12574005	0.575	0.621	20.3
606	146.53224182	47.12571716	2.166	-	21.6
607	146.88822937	47.1395874	2.22	-	21.6
608	147.18640137	47.14618683	2.48	-	22.0
609	146.92857361	47.15113068	1.88	-	22.3
610	147.00349426	47.15265656	2.752	-	21.7
611	147.05418396	47.17601776	1.5	-	21.8
612	146.99693298	47.17819977	1.255	-	22.4
613	146.59747314	47.1798439	1.646	1.646	20.2
614	146.78948975	47.18053055	0.82	0.813	19.2
615	146.93858337	47.18781281	0.706	0.701	17.7
616	147.19421387	47.19058609	0.847	0.918	20.8
617	146.58854675	47.19205856	0.246	0.23	17.9
618	147.20317078	47.19726181	3.49	-	21.5
619	146.79162598	47.20190048	2.847	2.875	21.1
620	146.49519348	47.20504379	3.104	-	21.2
621	146.90104675	47.20858765	0.88	-	21.3
622	146.80589294	47.21124268	0.88	-	22.2
623	146.54399109	47.21284103	2.312	-	22.1
624	147.53625488	47.21355438	1.53	-	22.1
625	146.96250916	47.22281647	0.536	-	20.0
626	146.88601685	47.23645401	2.119	-	21.4
627	147.14871216	47.24507141	1.619	1.646	21.2
628	147.00404358	47.24965286	1.5	-	21.6
629	146.81716919	47.25676346	2.5	-	21.9
630	146.92155457	47.26118851	3.064	3.087	19.8
631	146.74525452	47.26594925	1.114	1.284	21.8

					-
632	146.53503418	47.27597046	1.997	-	21.3
633	147.37698364	47.28042984	3.11	-	22.0
634	146.44287109	47.2860527	1.53	1.537	20.5
635	146.49479675	47.29154587	3.31	-	21.9
636	147.05799866	47.29773712	1.178	1.205	19.3
637	146.59370422	47.30357361	2.012	-	22.5
638	147.06907654	47.30740356	1.53	-	21.1
639	147.40553284	47.31531525	2.771	-	22.5
640	147.13328552	47.32081223	1.2	-	22.4
641	147.01515198	47.32463455	1.68	1.667	20.7
642	146.60813904	47.32844925	2.151	-	21.1
643	146.44076538	47.33339691	3.423	-	22.1
644	146.88650513	47.33868027	2.714	-	21.8
645	146.67567444	47.34463501	0.79	0.751	19.1
646	146.7097168	47.34472656	1.001	1.02	20.5
647	146.75100708	47.35742569	4.677	-	22.4
648	146.60398865	47.36156464	1.568	-	22.3
649	146.76895142	47.36204529	0.52	0.539	17.8
650	146.70068359	47.36430359	2.412	2.48	20.2
651	146.54902649	47.39636612	5.16	-	21.9
652	147.09443665	47.40083313	4.967	-	22.4
653	147.11212158	47.40151215	0.96	-	21.3
654	146.54335022	47.4044838	2.182	2.196	22.2
655	146.68960571	47.40997696	2.49	-	21.9
656	146.80749512	47.41081238	2.659	2.718	21.8
657	146.50523376	47.41419983	2.827	2.872	21.5
658	147.10493469	47.41965103	0.96	0.96	19.1
659	147.25184631	47.43317032	3.65	3.677	21.2
660	146.77178955	47.46085358	0.96	-	22.3
661	146.46295166	47.46042252	1.88	-	21.2
662	146.63667297	47.46296692	2.464	-	20.1
663	146.93429565	47.46424484	2.8	-	21.4
664	146.6716156	47.46741104	2.7	-	21.1
665	146.68714905	47.46862793	2.28		21.6

666	147.1980896	47.4774971	1.031	1.036	19.9
667	146.710495	47.48370743	1.031	-	21.4
668	146.86312866	47.5056572	2.182	2.211	19.4
669	147.33442688	47.51122284	1.431	-	22.5
670	146.78201294	47.51733398	1.568	-	21.3
671	147.34786987	47.52017975	3.52	-	22.2
672	146.65194702	47.52140045	2.295	2.298	20.1
673	146.45695496	47.52118301	1.593	1.613	19.9
674	146.43649292	47.52851868	1.278	-	21.9
675	147.12545776	47.53221893	3.445	-	22.0
676	146.72610474	47.53276825	1.278	1.332	20.1
677	147.45063782	47.55324554	1.9	-	21.0
678	146.53529358	47.58034134	3.271	-	21.7
679	146.67732239	47.5961113	3.815	_	22.1
680	146.6526947	47.60800552	3.043	-	21.9
681	146.73538208	47.63514328	3.49	-	22.1
682	146.67253113	47.66460037	2.119	2.169	22.4