УДК 523.9-77

К ВОПРОСУ ОБ ОЦЕНКЕ ПЛОТНОСТИ ПОТОКА ИСТОЧНИКОВ СОЛНЕЧНОГО РАДИОИЗЛУЧЕНИЯ

© 2015 Л. В. Опейкина^{1*}, Е. К. Майорова¹, А. Н. Коржавин²

¹Специальная астрофизическая обсерватория РАН, Нижний Архыз, 369167 Россия ²Санкт-Петербургский филиал Специальной астрофизической обсерватории РАН, Санкт-Петербург, 196140 Россия

Поступила в редакцию 12 января 2015 года; принята в печать 21 апреля 2015 года

В работе рассматривается соотношение между интегралом под кривой антенной температуры и плотностью потока радиоисточника, на котором основаны способы получения плотности потока источников солнечного радиоизлучения, наблюдаемых на РАТАН-600. С помощью компьютерного моделирования получены коэффициенты перехода от антенных температур к плотности потока источников для стандартных режимов работы РАТАН-600. Рассмотрена зависимость этих коэффициентов от вида диаграммы направленности и распределения радиояркости источника.

Ключевые слова: методы: наблюдательные — Солнце: радиоизлучение

1. ВВЕДЕНИЕ

Исходными данными для выяснения природы источников космического радиоизлучения являются их радиохарактеристики: координаты, размеры, плотность потока, яркостная температура. Определение этих характеристик по зарегистрированному радиотелескопом излучению не всегда является простой задачей. На РАТАН-600 [1, 2] параметры источников определяются по результатам одномерного сканирования. При этом из-за отсутствия достаточной информации для получения распределения радиояркости путем решения уравнения антенного сглаживания, приходится применять косвенные методы. Так, для определения плотности потока солнечных источников применяются два способа калибровки (масштабирования) сканов, полученных в единицах антенной температуры:

(1) скан T_a приводится к единицам Jy/arcsec с помощью домножения на коэффициент, связывающий интеграл под кривой T_a с плотностью потока;

(2) интеграл под кривой приравнивается к плотности потока Солнца (полной или некоторой доле). Полная плотность потока Солнца ежедневно измеряется мировой сетью Службы Солнца [3].

Эти способы калибровки изначально основывались на представлении о том, что интеграл под кривой антенной температуры пропорционален плот-

ности потока источника с коэффициентом пропорциональности, не зависящим от формы диаграммы направленности (ДН) и распределения радиояркости (РРЯ) [4-7]. Это соотношение доказано в [4], но только для одномерных ДН и РРЯ. Двумерный случай, соответствующий реальной ситуации, рассмотрен в работах [8, 9], где показано, что плотность потока источника пропорциональна двойному интегралу от распределения антенной температуры. При этом к одномерному скану соотношение в общем случае не применимо. Однако в работе [9] показано также, что интеграл под кривой пропорционален плотности потока с коэффициентом пропорциональности, независящим от РРЯ, если скан получен при наблюдениях с ножевой ДН. Ножевая диаграмма направленности является идеализацией, однако ее можно применить к диаграммам, у которых размер по одной из координат много больше, чем по другой, и значительно превышает видимый размер источника. Важным свойством ножевой диаграммы, существенным для нашего рассмотрения, является возможность представить диаграмму в виде произведения двух независимых множителей, каждый из которых зависит от одной координаты.

Способы калибровки, основанные на связи интеграла под кривой прохождения источника с его плотностью потока, использовались при обработке наблюдений Солнца, полученных на Большом пулковском радиотелескопе (БПР) (см., например, [5–7, 10–12]), а затем перешли в практику РАТАН-600 [13–16]. В режиме «Южный сектор

^{*}E-mail: lvo@sao.ru

с плоским отражателем» (ЮП) [17], в котором, как правило, проводятся наблюдения Солнца на РАТАН-600, диаграмма имеет ножевую форму, и на дециметровых волнах размер «ножа» по вертикали превышает диаметр Солнца. Однако в коротковолновой части рабочего диапазона вертикальная диаграмма меньше диска Солнца. При наблюдениях на РАТАН-600 в режиме сектора и на БПР ДН имеет более сложную форму, чем ножевая, и приближается к ножевой только на малых высотах. Поэтому требуется дополнительное обоснование и коррекция способов калибровки, вытекающих из соотношений, доказанных в [4, 9].

В некоторых работах, где использовались указанные способы калибровки, имеются краткие замечания, касающиеся обоснования этих процедур. Так, в работе [10] отмечается, что, несмотря на отличие диаграммы БПР на высотах более 30° от ножевой, «в пределах размера Солнца суммарная по диаграмме спектральная плотность потока излучения не претерпевает существенного изменения». В ряде работ дается информация о поправочных коэффициентах, которые вводятся в случае, если размер ножевой диаграммы по вертикали меньше, чем диск Солнца. В этом случае интеграл под кривой антенной температуры приравнивается полной плотности потока от Солнца за вычетом той части потока спокойного Солнца, которая не попала в скан [15, 16], а при вычислении плотности потока источников малого размера учитывается падение амплитуды ДН при смещении источника от центра ДН по вертикали [18]. Однако в целом достаточно подробного обоснования и описания процедур получения плотности потоков Солнца и солнечных источников, наблюдаемых на РАТАН-600, нет. В связи с этим нам представляется необходимым вернутся к этим вопросам.

В данной работе мы еще раз рассмотрим соотношение между интегралом под кривой антенной температуры и плотностью потока источника и определим условия его применимости. С помощью компьютерного моделирования рассчитаем коэффициенты перехода от антенных температур к плотности потока для различных ДН и РРЯ и сравним их со значениями, используемыми в настоящее время для обработки данных. Также уточним поправочные коэффициенты, учитывающие недостаточный размер ножевой диаграммы по вертикали. Необходимые для этого расчеты диаграмм направленности будем проводить как с использованием алгоритма расчета в приближении геометрической оптики [19], так и алгоритма, учитывающего дифракционные эффекты в пространстве между зеркалами антенной системы, который дает более точное представление о характеристиках ДН на волнах длиннее 8 см [20, 21].

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 70 № 3 2015

2. ИНТЕГРАЛ ПОД КРИВОЙ АНТЕННОЙ ТЕМПЕРАТУРЫ

В работе [4] было показано, что независимо от формы диаграммы направленности антенны и распределения радиояркости источника для одномерного случая выполняется равенство:

$$\int T_a(x) \, dx = \int T_b(x') \, dx', \tag{1}$$

где T_a и T_b — антенная и яркостная температуры соответственно. Здесь и далее интегрирование проводится в пределах $\pm \infty$.

Аналогичным образом для двумерных функций T_a и T_b можно получить [9]:

$$\iint T_a(x,y) \, dx \, dy = \iint T_b(x',y') \, dx' \, dy'. \tag{2}$$

Заметим, что это соотношение связано с известным соотношением $\Omega_d = \lambda^2 / A_{\text{eff}}$, где Ω_d — телесный угол диаграммы направленности, A_{eff} — эффективная площадь антенны в максимуме ДН, а λ — длина волны. Из (2) получаем, что плотность потока

$$F = \frac{2k}{\lambda^2} \iint T_a(x, y) \, dx \, dy, \tag{3}$$

где *k* — постоянная Больцмана.

Что касается одномерных интегралов $T_a(x, y)$ вдоль какого-либо направления, то в общем случае они не равны между собой, и плотность потока источника нельзя выразить через такой интеграл, домноженный на коэффициент, не зависящий от вида распределения радиояркости и ДН. Это легко видеть на примере наблюдений точечного источника, так как в этом случае равенство интегралов в сечениях $T_a(x, y)$ означало бы равенство интегралов в любых одномерных сечениях диаграммы, что в общем случае для диаграмм произвольного вида не выполняется.

Рассмотрим случай ножевой диаграммы, которая может быть представлена как произведение двух множителей:

$$A(x,y) = A_1(x) A_2(y),$$
 (4)

причем размер диаграммы по одной из координат много больше размера по другой координате. Будем считать, что больший размер диаграммы ориентирован по оси y (вертикальная координата), а источники сканируются в перпендикулярном направлении вдоль оси x. Интегрируя T_a по x, получим:

$$\int T_a(x,y) \, dx = \frac{\iint T_b(x',y') \, A_2(y,y') \, dx' \, dy'}{\int A_2(y') \, dy'}.$$
(5)

Заметим, что в используемой записи уравнения антенного сглаживания максимум ДН нормирован на единицу. Если в пределах источника диаграмма A_2 мало отличается от единицы, то можно записать:

$$\int T_a(x,y) \, dx \approx \frac{\iint T_b(x',y') \, dx' \, dy'}{\int A_2(y') \, dy'}.$$
 (6)

Для реальных ножевых ДН интеграл $\int A_2(y') \, dy'$ конечен и в приближении геометрической оптики

пропорционален λ/d_y (где d_y — размер антенны по y). Таким образом,

$$\iint T_b(x,y) \, dx \, dy \sim \lambda \int T_a(x,y) \, dx. \tag{7}$$

Домножая интеграл от T_b на $\frac{2\kappa}{\lambda^2}$, получим для плотности потока:

$$F = \rho_0 \int T_a(x, y) \, dx,\tag{8}$$

где коэффициент ρ_0 при сделанных допущениях так же, как и в случае двумерного интеграла от T_a , не зависит от распределения радиояркости источника. В отличие от коэффициента в формуле (3), ρ_0 пропорционален λ^{-1} .

В случае, когда в пределах источника A_2 отличается от единицы, числитель в формуле (5) можно представить как $\gamma \iint T_b(x', y') dx' dy'$. Тогда соотношения (7) и (8) запишутся следующим образом:

$$\gamma \iint T_b(x', y') \, dx' \, dy' \sim \lambda \int T_a(x, y) \, dx,$$

$$F = \frac{\rho_0}{\gamma} \int T_a(x, y) \, dx.$$
(9)

Коэффициент γ представляет собой долю плотности потока источника, попавшую в скан, и может быть получен с помощью вычисления «стрипскана» S(x, y):

$$S(x,y) = \int T_b(x,y') A_2(y,y') dy',$$

$$\gamma = \frac{\int S(x,y) dx}{\iint T_b(x,y) dx dy}.$$
(10)

Коэффициент γ зависит от длины волны, распределения радиояркости источника и характеристик A_2 , а также от *у*-координаты скана, характеризующей взаимное расположение диаграммы и источника по вертикали.

3. СООТНОШЕНИЕ РАЗМЕРОВ ДН И ДИСКА СОЛНЦА В РЕЖИМЕ ЮП

Как показано, например, в работе [19], при наблюдениях сектором кругового отражателя диаграмма направленности РАТАН-600 может быть представлена в виде произведения двух множителей: диаграммы бесконечно тонкой дуги и вертикальной диаграммы отдельного элемента антенны. Если сектор выставляется на нулевую высоту или наблюдения ведутся в режиме ЮП, то каждый из этих множителей зависит только от одной координаты, и выполняется соотношение (5). Если ширина A_2 (вертикальной диаграммы отдельного элемента) достаточно велика по сравнению с размером источника, то выполняется и условие (6).

Для оценки ширины вертикальной диаграммы рассмотрим два варианта вычисления A_2 : аппроксимацию гауссианами из [18] и вертикальные сечения двумерной ДН, рассчитанной с помощью алгоритма, учитывающего дифракционные эффекты в пространстве между зеркалами [20, 21]. Аппроксимация [18] соответствует расчету ДН в приближении геометрической оптики. В этом случае размер ДН растет с длиной волны линейно. При учете дифракционных эффектов вертикальная ДН на волнах длиннее 8 см сужается по сравнению с линейным приближением, что было показано в [21].

Аппроксимация гауссианами имеет следующий вид:

$$A_2(y) = e^{-\alpha(y-h_0)^2}, \qquad (11)$$

где размер диаграммы по уровню половинной мощности $\Theta_{0.5}^y = 2\sqrt{\frac{\ln 2}{\alpha}}$, а h_0 задает смещение центра диаграммы от начала координат. Приведенные в [18] значения α можно приближенно представить формулой $\alpha \approx 0.07 \lambda^{-2}$, где значения λ даны в сантиметрах, при этом y в формулу (11) следует подставлять в минутах дуги.

Расчет ДН с учетом дифракционных эффектов выполнялся для стандартной установки антенны в режиме ЮП на высоту наблюдаемого источника $h = 50^{\circ}$ с максимально возможным для этого режима числом элементов главного зеркала (угол облучения главного зеркала из фокуса порядка 100°). Параметры первичного облучателя: угол наклона к горизонту 50°, ширина диаграммы направленности 100° на уровне 0.3 от максимума. Высота элементов плоского зеркала бралась $H_p = 8.5$ м, а высота элементов главного зеркала H = 7.4 м и H = 11 м, что соответствует двум различным периодам работы РАТАН-600.

Слева на рис. 1 показан размер вертикальной ДН по уровню половинной мощности в зависимости от длины волны для перечисленных выше

Рис. 1. Слева — ширина вертикальной ДН для режима ЮП: (1) рассчитанная по формуле (11); (2) с учетом дифракции для H = 11 м; (3) для H = 7.4 м. Крестиками показана ширина, приведенная в работах [16, 18]. Справа — коэффициент γ , характеризующий долю потока, попадающую в скан при сканировании спокойного Солнца диаграммами 1 (крестики) и 2 (кружки). Звездочками показаны γ из работы [16].

вариантов: кривая 1 вычислена по формуле (11), кривые 2 и 3 — это расчет с учетом дифракционных эффектов для H = 11 м и H = 7.4 м соответственно. Видно, что в диапазоне 1—4 см все кривые хорошо совпадают, но на более длинных волнах разница между кривой 1 и кривыми 2 и 3 увеличивается и на волнах 20—30 см достигает 30—50%. Крестиками на этом рисунке показаны размеры вертикальной диаграммы, взятые из различных работ, содержащих результаты обработки сканов Солнца, например [16, 18]. Эти значения хорошо ложатся на кривую 1 и, скорее всего, получены расчетным способом в приближении геометрической оптики.

Следует отметить, что размеры вертикальных ДН при высоте щитов главного зеркала 7.4 и 11 м различаются мало. Это объясняется тем, что на длинных волнах размер в большей степени определяется высотой щитов плоского отражателя, а на коротких волнах — малой высотой вторичного зеркала (5.5 м). Также следует учитывать, что имеется зависимость ширины вертикальной ДН от высоты наблюдаемого источника, что подробно было рассмотрено в работе [21].

Ширина диаграммы $\Theta_{0.5}^y$ становится больше размера оптического диска Солнца (порядка 32') на $\lambda \sim 5$ см для варианта 1 и $\lambda \sim 6$ см для вариантов 2 и 3. Соотношение размеров солнечного диска и вертикальной диаграммы ранее использовалось как для оценки применимости приближения (6), так и для оценки доли плотности потока спокойного Солнца, попавшей в скан (см. например, [15]), однако более точные оценки дает коэффициент γ , определение которого дано в разделе 2.

На рис. 1 справа приведена зависимость γ от длины волны для вариантов вертикальной ДН

1 и 2, показанных на левом рисунке. Крестики соответствуют варианту 1, а кружки — варианту 2. В качестве модели спокойного Солнца взят диск равномерной яркости с радиусом 16'. Расчет сделан для скана, проходящего через центр источника (y = 0). Видно, что γ выходит на плато порядка единицы только на волнах длиннее 15 см. Ясно также, что в случае более близкого к реальному распределения радиояркости спокойного Солнца, где имеется уярчение к краям на волнах длиннее 6 см и радиорадиус больше оптического, эта граница отодвинется в сторону более длинных волн. В отличие от ширины вертикальной ДН, различия γ для разных вариантов оценки диаграммы невелики и не превышают нескольких процентов. На этом же рисунке звездочками показаны значения доли потока спокойного Солнца, попадающей в скан, которые были оценены в работе [16] способом, подобным используемому в нашей работе. Видно, что они мало отличаются от полученных нами величин.

4. КОЭФФИЦИЕНТ *р* ДЛЯ НАБЛЮДЕНИЙ В РЕЖИМЕ ЮП

Для случая наблюдений Солнца и других источников в режиме ЮП оценим коэффициент ρ , связывающий интеграл под кривой антенной температуры и плотность потока источника $F = \rho \int T_a(x, y) \, dx$. Для удобства сравнения с соответствующим коэффициентом, используемым при обработке наблюдений, будем вычислять ρ в единицах $\frac{Jy}{K \times \text{arcsec}}$.

Рассмотрим зависимость ρ от длины волны и распределения радиояркости. Сначала используем

Рис. 2. Слева — коэффициент ρ, рассчитанный для наблюдений в режиме ЮП источников различной формы и размеров: (1, 2) источники гауссовой формы с размером 30" и 3'; (3) диск равномерной яркости радиусом 16'; (4, 5) источники 1 и 2, вынесенные по вертикали на 8' из центра ДН. Справа — коэффициенты ρ для различных способов расчета ДН: крестики — расчет в приближении геометрической оптики; штриховая кривая — расчет с учетом дифракции, кружки — замена Ω_d в расчете с учетом дифракции.

расчет ДН в приближении геометрической оптики для того, чтобы видеть основные закономерности изменения ρ без влияния более сложного поведения ДН, связанного с учетом дифракции. На рис. 2 слева показано изменение *р*, полученное для трех моделей источников: двумерных гауссиан с шириной по обеим координатам 3' и 30" (кривые 1 и 2) и диска Солнца (кривая 3). Коэффициент р для тех же гауссиан, смещенных на 8' из центра вертикальной диаграммы, показан кривыми 4 и 5. Можно видеть, что для несмещенных гауссиан коэффициент р практически одинаков и падает пропорционально λ^{-1} . Это хорошо согласуется с предполагаемым поведением ρ_0 (формула (8)). Коэффициент ρ для диска Солнца и смещенных гауссиан на длинных волнах выходит на одну прямую с ρ для гауссиан, расположенных в центре диаграммы. Таким образом, можно полагать, что обе гауссианы в рассматриваемом диапазоне длин волн оказались достаточно малыми по сравнению с размером вертикальной ДН, и их коэффициент ρ равен ρ_0 .

На коротких волнах коэффициенты ρ для Солнца и гауссиан, вынесенных из центра ДН, отличаются от ρ_0 . Компьютерное моделирование показывает, что в этих случаях ρ связан с ρ_0 в соответствии с соотношениями (9): $\rho = \rho_0/\gamma$, причем в случае гауссиан 30" и 3' замена γ на амплитуду вертикальной ДН в точке смещения практически не меняет результат (напомним, что максимум диаграммы нормирован на единицу).

Учет дифракции в пространстве между зеркалами меняет характеристики диаграммы на длинных волнах, что приводит к изменению ρ . На рис. 2 справа показано изменение ρ для диска Солнца и диаграмм в режиме ЮП, рассчитанных в приближении геометрической оптики (крестики) и с учетом дифракции (штриховая линия). Моделирование показывает, что в этом случае различия ρ определяются в основном различием полных телесных углов диаграмм ($\Omega_d = \iint A(x, y) \, dx \, dy$, где A нор-

мирована на единицу). Если при вычислении ρ с учетом дифракции углы Ω_d заменить на Ω_d , рассчитанные в приближении геометрической оптики, то ρ (показаны кружками) практически совпадут с ρ , рассчитанными в приближении геометрической оптики.

5. КОЭФФИЦИЕНТ *р* ДЛЯ НАБЛЮДЕНИЙ В РЕЖИМЕ СЕКТОРА

Как было сказано выше, ДН сектора РАТАН-600 можно представить в виде произведения двух множителей. Но для высот, отличных от нуля, один из множителей зависит от обеих координат, и условие (4) не выполняется. Форма диаграммы меняется с высотой, и следовало ожидать, что ρ также будет меняться и отличаться от ρ , рассчитанного для режима ЮП. Однако диаграммы направленности РАТАН-600 (а также и БПР) в режиме работы одного сектора обладают свойством, которое приводит к тому, что ρ практически не меняется с высотой источника.

Для выяснения причин такого поведения ρ запишем интеграл под кривой антенной температуры следующим образом:

Рис. 3. Диаграммы направленности РАТАН-600: (а) для работы в режиме ЮП; (b) в режиме сектора на высоте 50°; (c) на высоте 80°.

$$\int T_a(x,y) \, dx = \frac{\iint T_b(x',y') \, dx' \, dy' \int A(x,x',y,y') \, dx}{\iint A(x',y') \, dx' \, dy'} = \iint T_b(x',y') \, A_i(y) \, dx' \, dy', \tag{12}$$

где

$$A_i(y) = \frac{\int A(x,y) \, dx}{\iint A(x,y) \, dx \, dy}.$$
 (13)

По аналогии с [19, 22], где также рассматривалась функция $A_i(y)$, будем называть ее интегральной вертикальной диаграммой. Очевидно, что если диаграммы некоторого семейства имеют одинаковые $A_i(y)$, то и ρ для одного и того же РРЯ будут совпадать.

Компьютерное моделирование показывает, что диаграммы антенны переменного профиля в режиме наблюдений одним сектором имеют практически одинаковые $A_i(y)$, совпадающие с вертикальной ДН отдельного элемента (хотя ширина вертикального сечения самой ДН заметно уменьшается с ростом высоты наблюдаемого источника). На рис. За–Зс показаны примеры ДН на волне 2 см для высот 0°, 50° и 80°. Изолинии проведены, начиная с уровня 0.1 от максимума диаграммы. Видно, что диаграммы заметно различаются формой и размерами лепестков, однако соответствующие этим диаграммам функции $A_i(y)$ и ρ , показанные на рис. 4, практически одинаковы.

При наблюдениях в азимутах ДН имеют такую же форму, как и при наблюдениях в меридиане, но располагаются под другим углом к оси x (линии сканирования). В этом случае интегральная вертикальная диаграмма и коэффициент ρ будут отличаться от соответствующих величин в меридиане, где ДН ориентирована перпендикулярно оси

х. На рис. 5 приведен пример функции $A_i(y)$ для ножевой диаграммы, аналогичной той, что показана на рис. За, но расположенной под углом около 45° к линии сканирования. Видно, что она заметно отличается от $A_i(y)$ для нулевого позиционного угла. Моделирование показывает, что ρ в этом случае также различаются. Для гауссианы размером 3' отличия составили 30%, для диска Солнца ρ отличаются всего на несколько процентов.

На рис. 6 показаны модельные ρ и те, которые используются при обработке солнечных сканов (записаны в заголовках FITS-файлов с данными). Рабочие коэффициенты превышают модельные значения, что отчасти объясняется тем, что при моделировании не был учтен коэффициент полезного действия антенны. Обращает на себя внимание довольно точная пропорциональность λ^{-1} для рабочих коэффициентов в диапазоне 1–7 см, делающая их похожими на модельные ρ для источников малых размеров.

6. ЗАКЛЮЧЕНИЕ

Суммируем результаты расчетов и рекомендации, касающиеся калибровки сканов.

(1) В общем случае коэффициент ρ , связывающий интеграл под кривой антенной температуры источника с его плотностью потока, зависит от РРЯ источника и от ДН. Однако если ДН имеет ножевую форму с размером «ножа» много больше размера источника, то ρ не зависит от РРЯ и равен ρ_0 , где $\rho_0 \sim \lambda^{-1}$. При учете дифракции коэффициент ρ на длинных волнах меньше,

Рис. 4. Слева — интегральные вертикальные диаграммы $A_i(y)$ для ДН, показанных на рис. 3. Справа — соответствующие этим же диаграммам коэффициенты ρ для распределения радиояркости в виде солнечного диска: сплошная линия — ДН в режиме ЮП; крестики — в режиме сектора на высоте 50°; кружки — на высоте 80°.

Рис. 5. Интегральные вертикальные диаграммы $A_i(y)$ для диаграммы, показанной на рис. За и расположенной под разными углами к линии сканирования: сплошная линия — угол 0°, штриховая — угол 45°.

чем ρ , рассчитанный в приближении геометрической оптики. Если в пределах источника амплитуда вертикальной диаграммы заметно отличается от единицы, то $\rho = \rho_0/\gamma$, где γ — доля плотности потока источника, попавшая в скан. Коэффициент γ зависит от РРЯ источника, характеристик вертикальной диаграммы и взаимного положения центров источника и диаграммы. Для источников много меньших размера вертикальной диаграммы, но вынесенных из центра ДН, γ примерно равна амплитуде ДН в месте расположения источника.

(2) Расчет γ и ρ для наблюдений Солнца в режиме ЮП РАТАН-600 показывает, что для любых составляющих солнечного радиоизлучения в пределах диска ножевое приближение ДН вы-

Рис. 6. Сравнение модельных ρ для источника гауссовой формы размером 30" (кривая 1) и для диска Солнца (кривая 2) с коэффициентами ρ , используемыми для обработки наблюдений (кривая 3), взятыми из FITS-файлов с данными (август 2011 г.).

полняется для $\lambda \gtrsim 10-15$ см. Для источников с размерами порядка размера активной области и меньше, находящихся близко к центру ДН, ножевое приближение выполняется во всем сантиметровом диапазоне длин волн. Коэффициенты γ и ρ дают более точные оценки применимости ножевого приближения, чем соотношение размеров диска Солнца и вертикальной ДН.

(3) Если ножевое приближение не выполняется, то источникам на скане соответствуют разные ρ , и способы калибровки как путем домножения скана T_a на общий для всех источников ρ , так и с помощью приравнивания интеграла под сканом известной плотности потока от Солнца неточны и требуют коррекции. В частности, при калибровке по известной плотности потока от Солнца не для всех источников можно учесть, какая доля их плотности потока попала в скан. При этом образуется избыток калибровочной плотности потока, который добавляется к плотности потока каждого источника пропорционально его площади под кривой. В калибровочной процедуре, реализованной в стандартной программе обработки WorkScan [23], учитывается только γ для спокойного Солнца. Последующая коррекция плотностей потока локальных источников (ЛИ), учитывающая смещение источника от центра вертикальной диаграммы, полностью ошибку калибровки не устраняет, поэтому необходимо корректировать долю плотности потока ЛИ в процессе калибровки, как это было сделано, например, в [15]. Следует также заметить, что весь скан Солнца не может быть представлен в единицах одномерной яркости Jy/arcsec (как иногда делается при публикации ежедневных сканов [18, 23]), такое представление можно применять только для источников над отдельными активными областя-МИ.

(4) Диаграмма направленности сектора РАТАН-600 заметно меняет свою форму при изменении высоты источника и является ножевой только на малых высотах. Тем не менее изменение формы ДН практически не приводит к изменениям ρ для источников с одинаковым РРЯ. Это объясняется тем, что у диаграмм РАТАН-600 сохраняется такая характеристика, как интегральная вертикальная диаграмма.

(5) При наблюдениях в азимутах форма ДН остается такой же, как и при наблюдениях в меридиане, но меняется расположение ДН по отношению к направлению сканирования источников. Это приводит к изменению ρ , что следует учитывать при проведении калибровочных процедур.

БЛАГОДАРНОСТИ

Авторы благодарят Н. Г. Петерову (СПбФ САО РАН) и В. Н. Боровик (ГАО РАН) за полезные обсуждения вопросов, рассмотренных в статье.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. Э. Хайкин, Н. Л. Кайдановский, Н. А. Есепкина, О. Н. Шиврис, Изв. ГАО **164**, 3 (1960).
- С. Э. Хайкин, Н. Л. Кайдановский, Ю. Н. Парийский, Н. А. Есепкина, Изв. ГАО 188, 3 (1972).
- H. Tanaka, J. P. Castelli, A. E. Covington, et al., Solar Phys. 29, 243 (1973).
- Д. В. Корольков, Ю. Н. Парийский, Н. С. Соболева, Солнечные данные, № 9, 65 (1958).
- 5. Д. В. Корольков, Н. С. Соболева, Г. Б. Гельфрейх, Изв. ГАО **164**, 81 (1960).
- 6. В. Н. Ихсанова, Изв. ГАО **164**, 62 (1960).
- 7. В. Н. Ихсанова, Изв. ГАО **180**, 51 (1966).
- 8. R. N. Bracewell, Australian J. Phys. 9, 297 (1956).
- Ю. Н. Парийский, О. Н. Шиврис, Изв. ГАО 188, 13 (1972).
- 10. В. Н. Ихсанова, Солнечные данные, № 2, 85 (1969).
- В. Н. Боровик, Астрофиз. исслед. (Известия САО) 11, 107 (1979).
- В. Н. Боровик, Н. Г. Петерова, Солнечные данные, № 1, 66 (1987).
- Ш. Б. Ахмедов, В. М. Богод, В. Н. Боровик и др., Астрофиз. исслед. (Известия САО) 25, 105 (1987).
- В. А. Шатилов, Астрофиз. исслед. (Известия САО) 25, 168 (1987).
- 15. В. Н. Боровик, М. Ш. Курбанов, в Пространственно-временные аспекты солнечной активности (ФТИ им. А. Ф. Иоффе, Санкт-Петербург, 1992), сс. 67–76.
- A. Nindos, C. E. Alissandrakis, G. B. Gelfreikh, et al., Solar Phys. 165, 41 (1996).
- О. Н. Шиврис, Астрофиз. исслед. (Известия САО) 12, 134 (1980).
- В. М. Богод, С. И. Болдырев, В. А. Зуева и др., Результаты наблюдений Солнца на радиотелескопе РАТАН-600 в диапазоне волн 0.8–31.6 см. 1984 год, (Междуведомственный геофизический комитет при Президиуме АН СССР, Москва, 1992).
- 19. А. Н. Коржавин, Астрофиз. исслед. (Известия САО) **9**, 71 (1977).
- 20. E. K. Majorova, Bull. Spec. Astrophys. Obs. **53**, 78 (2002).
- 21. E. K. Majorova, Astrophysical Bulletin 66, 90 (2011).
- 22. А. Н. Коржавин, Астрофиз. исслед. (Известия САО) **9**, 53 (1977).
- В. И. Гараимов, Препринт № 127Т, (Специальная астрофизическая обсерватория РАН, Нижний Архыз, 1997).

Revisiting the Estimation of Solar Radio Emission Flux Densities

L. V. Opeikina, E. K. Majorova, and A. N. Korzhavin

In the present paper, we reviewed the relation between the integral under the antenna-temperature curve and the flux density of a source of radio emission, on which the methods for estimation of flux densities of solar radio emissions observed on RATAN-600 are based. Using computer modeling, we obtained the conversion factors of antenna temperatures into flux densities of the sources for the RATAN-600 standard working conditions. The dependence of these factors on the beam-pattern type and radio-brightness distribution of the source was also studied here.

Keywords: methods: observational—Sun: radio emissions