УДК 524.338.6-337

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЯ МАГНИТНОГО ПОЛЯ МОЛОДЫХ ЗВЕЗД DO Tau, DR Tau, DS Tau

© 2013 А. В. Додин^{1*}, С. А. Ламзин¹, Г. А. Чунтонов²

¹Государственный астрономический институт им. П. К. Штернберга Московского Государственного Университета им. М. В. Ломоносова, Москва, 119991 Россия

²Специальная астрофизическая обсерватория РАН, Нижний Архыз, 369167 Россия Поступила в редакцию 29 декабря 2012 года; принята в печать 13 марта 2013 года

Приведены результаты измерений продольной компоненты индукции магнитного поля B_z в горячем аккреционном пятне трех классических звезд типа T Тельца (CTTS). У всех трех звезд обнаружено магнитное поле в области формирования узкого компонента эмиссионной линии He I 5876 Å на уровне больше 2σ . В случае DS Tau удалось также измерить B_z в горячем пятне по узким эмиссионным компонентам линий Na I D, оно составило $+0.8 \pm 0.3$ кГс и оказалось равным B_z , найденному по линии He I 5876 Å. Судя по полученным результатам, с помощью БТА САО РАН магнитное поле в горячем пятне можно изучать у CTTS с блеском до 13^m , что позволяет в перспективе вдвое увеличить количество звезд этого типа с измеренным значением B_z в зоне аккреции.

Ключевые слова: звёзды: переменные: T Tauri—звёзды: магнитное поле—звёзды: индивидуальные: DO Tau, DR Tau, DS Tau

1. ВВЕДЕНИЕ

Звезды типа Т Тельца — это молодые звезды $(t < 10^7$ лет) малой массы $(M \leq 2 M_{\odot})$, которые находятся на стадии гравитационного сжатия и движутся к Главной последовательности. Среди звезд этого типа выделяют подкласс классических звезд Т Тельца (CTTS), активность которых обусловлена аккрецией вещества протопланетного диска [1]. Внутренние области аккреционного диска CTTS разрушаются магнитным полем звезды. после чего вещество диска вдоль силовых линий падает на звезду. При столкновении струи аккрецируемого газа с плотными слоями звездной атмосферы возникает ударная волна, на фронте которой кинетическая энергия струи перерабатывается в коротковолновое излучение. Половина этого излучения движется по направлению к звезде и прогревает верхние слои ее атмосферы, создавая на поверхности СТТЅ горячее пятно. Расчеты Додина и Ламзина [2] подтверждают гипотезу Баталья и др. [3] о том, что именно в этой области формируются узкие (FWHM ~ 30 км/с) компоненты эмиссионных линий CTTS. Следовательно, если для измерения индукции поля использовать узкие компоненты эмиссионных линий, то полученное значение будет характеризовать поле в области аккреции на поверхности звезды.

Вторая половина коротковолнового излучения ударной волны излучается наружу и создает зону Н II перед фронтом ударной волны в аккрецируемом газе. В этой, а также в более обширной области, где происходит разрушение диска и формирование магнитосферного ветра, по-видимому, образуются широкие (FWHM > 100 км/c) компоненты эмиссионных линий CTTS. Соотношение между интенсивностью узкой и широкой компонент различно у разных линий и меняется с течением времени, а для одних и тех же линий варьируется от звезды к звезде. Поскольку широкие компоненты формируются в области, которая может быть удалена от поверхности звезды на значительное расстояние, индукция поля, измеряемая по ним, как правило, в несколько раз меньше, чем по узким (см. [4]).

Магнитное поле молодых звезд определяет характер активности CTTS и играет основополагающую роль в эволюции углового момента этих объектов, поэтому вопрос о величине и топологии магнитного поля является одним из основных в физике молодых звезд. На данный момент магнитное поле обнаружено примерно у сорока CTTS. Измерения существенно различаются по методике, в результате чего индукция поля, измеренная в разных работах, может относиться к различным пространственным областям. Для звезд CV Cha и CR Cha [5], TW Hya [6], V 2129 Oph [7],

^{*}E-mail: dodin_nv@mail.ru

V 2247 Oph [8], AA Tau [9], BP Tau [10] построены карты распределения поля в фотосфере на основе анализа поляризованного излучения. Еще для 26 звёзд поле измерено по зеемановскому уширению линий в неполяризованном свете [11, 12]. По узким эмиссионным компонентам линий, которые образуются в зоне аккреции, поле было измерено всего для 10 звёзд: RW Aur [4], TW Hya [6], V 2129 Oph [7], AA Tau [9], BP Tau [10, 13, 14], GM Aur, DF Tau, DN Tau, GG Tau [13], T Tau [15].

Для измерения магнитного поля требуются спектры высокого качества, поэтому соответствующие наблюдения проводятся на крупных телескопах для ярких звезд с большим числом сильных линий. Однако количество таких звезд невелико и практически ограничивается представленным выше списком. Если не ставить задачу определения магнитного поля в фотосфере звезды, а определять поле только в зоне аккреции у поверхности звезды по узким компонентам эмиссионных линий, то возможность измерения поля будет определяться не столько блеском звезды, сколько характером потока и формой профиля этих линий. Изучив несколько десятков архивных спектров CTTS с телескопов КЕСК и VLT, мы выделили восемь относительно слабых звезд с сильной и узкой эмиссионной линией HeI 5876 A, у которых магнитное поле прежде не измерялось. В этой работе представлены результаты измерения поля для трех из этих восьми звезд: DO Tau (спектральный класс M0, величина в фильтре $V = 13 \cdot 0 - 14 \cdot 3$ [16]), DR Tau (K5, $V = 10^{\text{m}} 8 - 12^{\text{m}} 8$ [17]), DS Tau (K5, $V = 11 \stackrel{\mathrm{m}}{\cdot} 6 - 12 \stackrel{\mathrm{m}}{\cdot} 7 [17]).$

2. НАБЛЮДЕНИЯ И ИХ ОБРАБОТКА

Если магнитное поле в области формирования линии имеет продольную компоненту B_z , то при наблюдении какой-либо линии с длиной волны λ_0 в право- и левополяризованном свете ее σ -компоненты окажутся смещенными относительно друг друга на величину [18]:

$$\Delta_B \simeq 2.3 \times 10^{-2} g \left(\frac{\lambda_0}{5000}\right)^2 B_z, \qquad (1)$$

где g — фактор Ланде рассматриваемой линии, причем величины Δ_B и λ_0 выражены в Å, а величина B_z — в килогауссах. Это соотношение позволяет находить усредненное по области формирования линии значение B_z , измеряя величину Δ_B по двум спектрам, полученным в право- и левополяризованном свете.

Наблюдения проводились 26-27 октября 2012 г. на 6-м телескопе САО РАН со спектрографом

ОЗСП¹ [19], оснащенным поляризационной пластинкой $\lambda/4$ и двойным резателем изображения [20]. Ширина щели спектрографа 0. 5. Наблюдения проводились в фиксированном спектральном диапазоне 5640—6480 Å с регистрацией на ПЗС-матрицу (E2V CCD42-90) размером 4600 рх вдоль дисперсии. Величина обратной линейной дисперсии составила 0.183 Å/рх.

Спектры обрабатывались следующим образом [14]. Фон неба, BIAS, а также следы космических лучей были удалены стандартным образом с помощью программ из пакета MIDAS. Калибровка по длинам волн проводилась с помощью торий-аргоновой лампы, после чего наблюдаемые спектры были смещены по лучевой скорости до совпадения положений абсорбционных линий с их положением в синтетическом спектре [2]. В Таблице 1 приведен журнал наблюдений, который содержит юлианскую дату JD середины наблюдения, продолжительность экспозиции и отношение сигнал к шуму S/N.

Чтобы исключить систематические инструментальные ошибки, наблюдения были организованы по следующей схеме. Для одного измерения магнитного поля выполнялись две экспозиции звезды. Между экспозициями суперахроматическая четвертьволновая фазовая пластинка поворачивалась на 90°, в результате чего право- и левополяризованные спектры менялись местами на ПЗС-матрице. Таким образом мы получали четыре спектра звезды: право- и левополяризованный для первой экспозиции R_1, L_1 и аналогичные спектры R_2, L_2 для второй экспозиции. Далее вычислялись разности между положениями линий в спектрах R₁ и L_1 , которую мы обозначили как Δ_1 , между R_2 и L_2 , которую мы обозначили как Δ_2 и между $R_1 + L_1$ и $R_2 + L_2$, которую мы обозначили как Δ_3 . Здесь R+L означают сумму одновременно полученных спектров. Эти разности вычислялись методом кросс-корреляции [21] для уровня доверия $\alpha = 0.68$, соответствующего ошибке в 1 σ . Тогда смещение линий, вследствие эффекта Зеемана, будет равно:

$$\Delta_B = \frac{\Delta_1 + \Delta_2}{2}.$$

Средний систематический сдвиг между *R* и *L* спектром:

$$\Delta = \frac{\Delta_2 - \Delta_1}{2},$$

а систематический сдвиг спектров между двумя экспозициями:

 $\delta = \Delta_3.$

¹Описание прибора доступно по адресу http://www.sao.ru/hq/lizm/mss/ru/tech.html Все сдвиги вычислялись в пикселах и, при необходимости, переводились в Å. Такая методика определения B_z использовалась нами для линий He I 5876 Å, Na I D и [O I] 6300 Å.

Однако в случае измерения поля одновременно по многим линиям уместно измерять сдвиги сразу всех рассматриваемых линий. В этом случае процедуру определения величины Δ_B необходимо усовершенствовать. Вычисляемые корреляционным методом смещения Δ_i (i = 1, 2) включают в себя два сдвига разной природы: Δ_B и Δ . Сдвиг Δ_B различен для каждой спектральной линии, поэтому при вычислении максимума корреляционной функции для определения величины Δ_i в качестве независимой переменной следует выбрать величину B_z , которая одинакова для всех линий, а смещение каждой линии вычислять по формуле (1). Систематический сдвиг Δ предполагается одинаковым для всего спектра, поэтому для его выявления независимой переменной должен быть сдвиг спектра как целого. Чтобы совместить эти противоречивые требования, мы находили средний систематический сдвиг $\overline{\Delta}$, предполагая, что он меняется так же, как Δ_B , а затем исправляли спектры за этот сдвиг $\overline{\Delta}$. Из-за того, что $\Delta \neq \overline{\Delta}$, эта процедура не устраняет систематическую ошибку, а только уменьшает ее. Однако повторение процедуры 3-4 раза позволяет устранить систематический сдвиг практически полностью. Ошибка определенной таким образом величины Δ_B равна $0.5 \sqrt{\sigma_{\Delta 1}^2 + \sigma_{\Delta 2}^2}$.

Факторы Ланде фотосферных линий взяты из базы данных VALD [22]. Для бленд линий фактор Ланде принимался равным средневзвешенному значению с весовым коэффициентом для каждой линии, входящей в бленду, пропорциональным силе линии:

$$g_{\text{eff}}(\lambda) = \frac{\sum g_i f_i(\lambda)}{\sum f_i(\lambda)},$$

где $f_i(\lambda)$ — гауссовский профиль линии шириной, определенной из наблюдаемого спектра, и амплитудой, равной глубине линии в спектре из базы VALD. Мы учитывали все линии фотосферы с известными факторами Ланде g_i , которые попадают в наш спектральный диапазон и имеют, по данным VALD, центральную глубину больше 0.1. Для исследованных в данной работе эмиссионных линий He I 5876 Å (потенциал возбуждения $\epsilon = 23.07$ эВ), [O I] 6300 Å ($\epsilon = 1.97$ эВ) и дублета Na I 5890, 5896 Å ($\epsilon = 2.10$ эВ) величина $g_{\rm eff}$ принималась равной 1.1, 1.0 и 1.33 соответственно.

Для проверки описанной выше методики измерения поля мы наблюдали звезды с известным

Таблица 1. Журнал наблюдений. N — порядковый номер наблюдения, которое состоит из двух экспозиций, $t_{\rm exp}$ — продолжительность каждой из этих экспозиций, S/N — среднее отношение сигнала в континууме к шуму для каждой из экспозиций

N	JD 2456220+	Звезда	$t_{\rm exp}$, s	S/N
1	7.181	γ Equ	180	360
2	7.186	$\gamma\mathrm{Equ}$	180	360
3	7.299	HD 216228	100	180
4	7.324	DS Tau	1200	62
5	7.354	DS Tau	1200	64
6	7.383	DS Tau	1200	60
7	7.420	DR Tau	1200	123
8	7.449	DR Tau	1200	119
9	7.479	DR Tau	1200	113
10	7.510	DO Tau	1200	83
11	7.540	DO Tau	1200	78
12	7.628	HD 31398	100	110
13	7.638	53 Cam	300	370
14	8.212	$\gamma \mathrm{Equ}$	180	310
15	8.336	DS Tau	1200	72
16	8.365	DS Tau	1200	70
17	8.394	DS Tau	1200	78
18	8.429	DO Tau	1200	49
19	8.458	DO Tau	1200	49
20	8.488	DO Tau	1200	44
21	8.521	DR Tau	1200	88
22	8.550	DR Tau	1200	89
23	8.579	DR Tau	1200	84
24	8.639	53 Cam	300	350

магнитным полем 53 Сат и γ Еqu, а также звездыгиганты HD 216228 и HD 31398, поле которых должно быть близко к нулю. Результаты измерений B_z этих звезд представлены в Таблице 2. Как видно из неё, полученные значения B_z в случае HD 216228 и HD 31398 в пределах ошибки не отличаются от нуля, а для γ Еqu согласуются с результатами [23], где найдено, что у этой звезды B_z находится в интервале от -0.85 до -1.25 кГс. Эти результаты убеждают нас в правильности выбран-

Таблица 2. Контрольные измерения поля. B_z и σ_B — измеренная величина поля и его ошибка в кГс. B_e — ожидаемое поле в кГс

N	JD 2456220+	Звезда	B_z	σ_B	B_e
1	7.181	γ Equ	-1.00	0.09	-1.1 *
2	7.186	$\gamma\mathrm{Equ}$	-0.94	0.09	-1.1 *
3	7.299	HD 216228	-0.05	0.04	0.0
12	7.628	HD 31398	-0.03	0.04	0.0
13	7.638	53 Cam	-2.50	0.09	-1.4 **
14	8.212	$\gamma\mathrm{Equ}$	-0.89	0.09	-1.1 *
24	8.639	53 Cam	+1.92	0.11	+2.1 **

Notes: * Среднее значение из работы [23].

** Среднее значение из работы [24].

ной методики. Что касается 53 Сат, то в одном случае результат измерений в пределах ошибки совпадает с ожидаемым значением для соответствующей фазы из работы [24], а в другом заметно отличается от него. Отметим, что подобные и даже бо́льшие отклонения от предсказываемых значений также наблюдались у 53 Сат другими авторами [23].

3. РЕЗУЛЬТАТЫ

Звезды CTTS обычно имеют период осевого вращения около недели [25], поэтому можно ожидать, что за время наблюдения каждой звезды в течение ночи (около двух часов) поле не могло заметно измениться. Следовательно, имеет смысл вычислить среднее значение B_z за ночь:

$$\overline{B_z} = \frac{\sum (B_{zi}/\sigma_i^2)}{\sum (1/\sigma_i^2)}.$$

В соответствии со сказанным в предыдущем разделе, ошибка σ_i отдельных измерений вычислялась по ошибкам величин Δ_1 , Δ_2 .

Разброс значений между измерениями B_{zi} одной ночи может быть обусловлен только шумом спектра. Тогда оценка погрешности среднего будет равна:

$$\sigma_a = \left(\sum (1/\sigma_i^2)\right)^{-1/2}$$

Однако нельзя исключить, что разброс может быть вызван каким-либо другим случайным процессом,

стандартное отклонение для которого можно оценить следующим образом:

$$\sigma_b = t (n - 1, P)$$

$$\times \sqrt{\frac{1}{(n - 1)\sum(1/\sigma_i^2)} \sum \frac{(B_{zi} - \overline{B_z})^2}{\sigma_i^2}},$$

где P = 0.68 — уровень доверия, соответствующий одной σ , n — число усредняемых наблюдений, t — коэффициент Стьюдента. Если же имеют место оба процесса, и они независимы, совокупную ошибку среднего за ночь можно оценить как $\sigma_{\overline{B}} = \sqrt{\sigma_a^2 + \sigma_b^2}$. Величины $\overline{B_z}$ и $\sigma_{\overline{B}}$ приведены в Таблице З. Из неё следует, что в области формирования узкого компонента линии HeI 5876 Å у звезд DO Tau и DS Tau поле обнаружено на уровне, большем 2σ , а у DR Tau — большем 3σ . Примеры І-профилей данной линии для этих звезд представлены на Рис. 1. Вертикальными штриховыми линиями ограничена часть профиля линии (21 рх), по которой проводилось измерение поля. Изменение эквивалентной ширины линии от ночи к ночи может быть обусловлено либо вращением звезды, либо изменением физических условий в зоне аккреции. Наиболее явно это проявилось в случае DS Tau, у которой в первую ночь наблюдений линия He I 5876 Å была примерно в шесть раз слабее, чем во вторую.

Точки на рисунке — наблюдаемый V-профиль, при вычислении которого использовались попиксельно просуммированные по двум экспозициям лево- и правополяризованные спектры с учетом поправок Δ и δ :

$$R = R_1(\lambda) + R_2(\lambda - \Delta - \delta),$$

$$L = L_1(\lambda - \Delta) + L_2(\lambda - \delta),$$

$$V = 2\frac{R - L}{R + L}.$$

Смещения Δ и δ составляют десятые доли пиксела, поэтому, чтобы вычислить значения R_2 и L_2 для дробных значений пиксела, мы использовали линейную интерполяцию, которая приводит к небольшому сглаживанию спектров. Тонкой линией на рисунке показан теоретический V-профиль, который представляет собой относительную разность двух I-профилей, один из которых смещен от исходного положения на величину $\Delta_B/2$ влево, а второй вправо.

У звезд DO Tau и DR Tau в линиях дублета Na I доминирует широкий эмиссионный компонент (см. Рис. 2). Поле измерялось по двум линиям одновременно по участку спектра 5885.6–5900.3 Å.

Рис. 1. Примеры *I* и *V* профилей линии He I 5876 Å для звезд DO Tau, DR Tau, DS Tau. Слева — наблюдения 26 октября, справа — 27 октября. Номер в правом верхнем углу каждой панели соответствует номеру в Таблице 1. Жирная кривая наблюдаемый *I*-профиль. Точки — наблюдаемый *V*-профиль. Тонкая линия — *V*-профиль для значения поля из Таблицы 3. *V*-профили увеличены в десять раз и затем смещены вверх по оси ординат на 0.8. Штриховыми линиями отмечены уровень континуума и диапазон, по которому производилось вычисление поля. По оси абсцисс отложена лучевая скорость (км/с) в стеллоцентрической системе координат относительно центральной длины волны 5875.6 Å.

Звезла	N - N	He I 5876 Å		Na I D		[O I] 6300 Å		Фотосфера	
овсода		$\overline{B_z}$	$\sigma_{\overline{B}}$	$\overline{B_z}$	$\sigma_{\overline{B}}$	$\overline{B_z}$	$\sigma_{\overline{B}}$	$\overline{B_z}$	$\sigma_{\overline{B}}$
DO Tau	10-11	-0.79	0.27	-0.13	0.30	-0.01	0.31	+0.23	0.29
	18-20	-0.45	0.36	+0.20	0.51	+0.08	0.40	-0.14	0.44
DR Tau	7-9	-0.94	0.32	-0.29	0.46	-0.16	0.36	-0.11	0.45
	21-23	-1.51	0.37	-0.44	0.30	-0.03	0.31	-0.55	0.41
DS Tau	4-6	+0.32	1.97	_	_	-0.28	0.63	+0.05	0.70
	15-17	+0.80	0.34	_	—	+0.56	0.70	+0.02	0.64

Таблица 3. Результаты измерений поля CTTS. N-N — порядковые номера наблюдений из Таблицы 1, $\overline{B_z}$ и $\sigma_{\overline{B}}$ — величина продольной компоненты поля и ее ошибка в кГс

Рис. 2. Примеры *I*-профилей линий дублета Na I в спектрах звезд DO Tau, DR Tau и DS Tau в первую (левый ряд) и вторую (правый ряд) ночь наблюдений. Номер в правом верхнем углу каждой панели соответствует номеру в Таблице 1. Штриховой линией показан уровень континуума и диапазон, по которому производилось вычисление поля. По оси абсцисс отложена лучевая скорость (км/с) в стеллоцентрической системе координат относительно центральной длины волны 5889.95 Å.

Результаты этих измерений собраны в Таблице 3, из которой видно, что значение $\overline{B_z}$ по широкому компоненту линий Na I D равно нулю с точностью лучше ~1.5 σ , что характерно для широких компонент эмиссионных линий CTTS (см. Введение).

У звезды DS Таи в линиях дублета Na I D широкий эмиссионный компонент отсутствует и линии состоят из широких фотосферных крыльев и узкой центральной эмиссии. Величина B_z , полученная только по узким компонентам обеих линий дублета и усредненная по всем наблюдениям первой ночи (номера 4–6 из Таблицы 1), оказалась равной –0.21 ± 0.34 кГс. Иными словами, поле в области образования узкого компонента линий дублета Na I D, как и в линии He I 5876 Å, в эту ночь обнаружено не было. Однако в следующую ночь (наблюдения 15–17) аналогичные измерения по эмиссионным компонентам линий дублета натрия дали значения $\overline{B_z} = +0.79 \pm 0.34$ кГс, что хорошо согласуется со значением $\overline{B_z}$, измеренным в ту же ночь по линии He I 5876 Å: $+0.80 \pm 0.34$ кГс.

Поле, измеренное по запрещенной линии [O I] 6300 Å всегда заметно меньше ошибки его определения, поскольку эта линия образуется в газе низкой плотности, в большом объеме далеко от звезды, где магнитное поле близко к нулю. Измерения этой линии проводились для дополнительной проверки отсутствия больших систематических ошибок в методике обработки спектра.

Поле, измеренное по фотосферным линиям, у всех трех звезд не отличается от нуля в пределах ошибки. Это, по-видимому, обусловлено двумя эффектами. Во-первых, мы наблюдали слабые CTTS, и отношение S/N для них, как правило, заметно ниже, чем, например, для контрольных звезд, но главное — излучение горячего пятна приводит к существенному уменьшению глубины абсорбционных линий у CTTS, что дополнительно увеличивает ошибку измерения $\overline{B_z}$. Во-вторых, мы измеряем только продольную компоненту поля. Это приводит к тому, что даже если в фотосфере индукция поля такая же, как в области формирования линии He I 5876 Å, то из-за усреднения по всей видимой поверхности звезды продольная компонента поля будет в несколько раз меньше, чем в линии He I 5876 Å, для которой усреднение производится лишь по зоне аккреции [26].

4. ЗАКЛЮЧЕНИЕ

В работе продемонстрирована возможность определения магнитного поля в зоне аккреции у сравнительно слабых СТТЅ путем измерения зеемановского расщепления узких сильных эмиссионных линий в их спектрах. Следуя сложившейся традиции, мы определяли поле по линии HeI5876 Å, однако в будущем для этой цели можно будет использовать и линии других элементов, которые, как и линия HeI 5876 Å, формируются в зоне аккреции.

Найденные нами величины B_z в области аккреции — это значения продольной компоненты поля, усредненные по всей области пятна с весом, пропорциональным интенсивности линии в данной точке. Додин и др. [27] показали, что в спектрах CTTS имеются линии, интенсивность которых различным образом меняется в зависимости от величины аккреционного потока $F_{\rm ac} = \rho_0 V_0^3/2$, где ρ_0 и V0 — плотность и скорость газа перед фронтом ударной волны соответственно. Например, интенсивность линий Ca I растет при увеличении $F_{\rm ac}$, а линий Call, наоборот, уменьшается. Это открывает возможность использовать такого рода линии для определения магнитного поля в различных частях аккреционной зоны, которые отличаются значениями Fac.

БЛАГОДАРНОСТИ

Авторы благодарят комиссию по тематике больших телескопов за выделение времени для проведения наблюдений на БТА САО РАН. Наблюдения на 6-метровом телескопе БТА проводятся при финансовой поддержке Министерства науки и образования Российской федерации (госконтракты 14.518.11.7070, 16.518.11.7073). Работа выполнена при поддержке фонда "Ведущие научные школы", НШ-5440.2012.2.

СПИСОК ЛИТЕРАТУРЫ

1. C. Bertout, Ann. Rev. Astron. Astrophys. 27, 351 (1989).

- 2. A. V. Dodin and S. A. Lamzin, Astron. Lett. 38, 649 (2012).
- C. C. Batalha, N. M. Stout-Batalha, G. Basri, and M. A. O. Nerra, Astrophys. J. Suppl. 103, 211 (1996).
- 4. A. V. Dodin, S. A. Lamzin, and G. A. Chuntonov, Astron. Lett. 38, 167 (2012).
- G. A. J. Hussain, A. C. Cameron, M. M. Jardine, et al., Monthly Notices Roy. Astronom. Soc. 398, 189 (2009).
- J.-F. Donati, S. G. Gregory, S. H. P. Alencar, et al., Monthly Notices Roy. Astronom. Soc. 417, 472 (2011b).
- J.-F. Donati, J. Bouvier, F. M. Walter, et al., Monthly Notices Roy. Astronom. Soc. 412, 2454 (2011a).
- 8. J.-F. Donati, M. B. Skelly, J. Bouvier, et al., Monthly Notices Roy. Astronom. Soc. 402, 1426 (2010a).
- 9. J.-F. Donati, M. B. Skelly, J. Bouvier, et al., Monthly Notices Roy. Astronom. Soc. **409**, 1347 (2010b).
- J.-F. Donati, M. M. Jardine, S. G. Gregory, et al., Monthly Notices Roy. Astronom. Soc. 386, 1234 (2008)
- 11. C. M. Johns-Krull, Astrophys. J. 664 975, (2007).
- 12. H. Yang and C. M. Johns-Krull, Astrophys. J. **729**, 83 (2011).
- N. H. Symington, T. J. Harries, R. Kurosawa, and T. Naylor, Monthly Notices Roy. Astronom. Soc. 358, 977 (2005).
- 14. G. A. Chuntonov, D. A. Smirnov, and S. A. Lamzin, Astron. Lett. **33**, 38 (2007).
- 15. D. A. Smirnov, S. A. Lamzin, S. N. Fabrika, and G. A. Chuntonov, Astron. Lett. **30**, 456 (2004).
- 16. W. Herbst, D. K. Herbst, E. J. Grossman, and D. Weinstein, Astronom. J. **108**, 1906 (1994).
- 17. K. N. Grankin, S. Yu. Melnikov, J. Bouvier, et al., Astronom. and Astrophys. **461**, 183 (2007).
- 18. H. W. Babcock, Astrophys. J. Suppl. 3, 141 (1958).
- 19. В. Е. Панчук, Препринт САО No. 154 (2001).
- G. A. Chuntonov, in *Proc. Int. Conf. on Magnetic stars*, Ed. by Yu. V. Glagolevskij, D. O. Kudryavtsev, and I. I. Romanyuk (SAO RAS, Nizhnii Arkhyz, 2004), p. 286.
- 21. R. M. Johnstone and M. V. Penston, Monthly Notices Roy. Astronom. Soc. **219**, 927 (1986).
- 22. F. Kupka, N. Piskunov, T. A. Ryabchikova, et al., Astronom. and Astrophys. Suppl. **138**, 119 (1999).
- 23. D. O. Kudryavtsev and I. I. Romanyuk, Astron. Nachr. 333, 41 (2012).
- G. M. Hill, D. A. Bohlender, J. D. Landstreet, et al., Monthly Notices Roy. Astronom. Soc. 297, 236 (1998).
- 25. S. A. Artemenko, K. N. Grankin, and P. P. Petrov, Astron. Lett. **38**, 783 (2012).
- 26. C. M. Johns-Krull, J. A. Valenti, A. P. Hatzes, and A. Kanaan, Astrophys. J. **510**, L41 (1999).
- 27. A. V. Dodin, S. A. Lamzin, and T. M. Sitnova, Astron. Lett. (in press).

Results of Magnetic Field Measurements in the Young Stars DO Tau, DR Tau, and DS Tau

A. V. Dodin, S. A. Lamzin, G. A. Chuntonov

The results of longitudinal magnetic-field measurements, B_z , in the hot accretion spot in three classical T Tauri stars (CTTS) are reported. In all three stars the magnetic field is detected at a level above 2σ in the formation region of the narrow component of the He I 5876 Å emission line. In the case of DS Tau the longitudinal field B_z in the hot spot was also measured from the narrow emission components of the Na I D lines, implying $+0.8 \pm 0.3$ kG, which is equal to the B_z field component measured from the He I 5876 Å line. Our results suggest that the 6-m telescope of the Special Astrophysical Observatory can be used to study magnetic fields in the hot spots of CTTS with magnitudes down to 13^{m} , making it possible, in the future, to double the number of stars of this type with measured B_z values in the accretion zone.

Keywords: stars: variables: T Tauri—stars: magnetic field—stars: individual: DO Tau, DR Tau, DS Tau