УДК 524.77-325.4

СТРУКТУРА СКОПЛЕНИЙ С БИМОДАЛЬНЫМ РАСПРЕДЕЛЕНИЕМ ЛУЧЕВЫХ СКОРОСТЕЙ ГАЛАКТИК. IV: A1569

© 2012 А.И.Копылов, Ф.Г.Копылова

Специальная астрофизическая обсерватория, Нижний Архыз, 369167 Россия Поступила в редакцию 1 августа 2011 г.; принята в печать 23 августа 2011 г.

В рамках программы изучения скоплений галактик с бимодальным распределением лучевых скоростей (с разностью скоростей между подсистемами $\Delta cz \sim 3000$ км/с) нами исследовано скопление A1569 $(12^{h}36^{m}3, +16^{\circ}35')$, а также соседнее скопление A1589 $(12^{h}41^{m}3, +18^{\circ}34')$, образующее вместе с А1569 пару (сверхскопление) размером в проекции около 10 Мпк. В скоплении А1569 выделены две подсистемы: A1569A (cz = 20613 км/с) и A1569B (cz = 23783 км/с). Эти подсистемы, при дисперсии лучевых скоростей 484 км/с и 493 км/с, имеют динамические массы, в пределах радиуса $R_{200}, 1.8 \times 10^{14}$ и $2.0 \times 10^{14} M_{\odot}$. Получены оценки прямых расстояний до подсистем по галактикам ранних типов с помощью соотношения Корменди, фотометрической плоскости и фундаментальной плоскости. Для этого использовались данные наших наблюдений на 1-м телескопе САО РАН и данные каталога SDSS DR7. Мы нашли, что скопление A1569 состоит из двух независимых скоплений. Скопление А1569В расположено на хаббловском расстоянии, соответствующем его лучевой скорости. Скопление A1569A имеет пекулярную скорость -1290 ± 630 км/с, которая может объясняться влиянием более массивного скопления A1589 (с массой $7.9 \times 10^{14} M_{\odot}$) и сверхскопления, в котором оно расположено. Во всех четырех изученных нами бимодальных скоплениях, А1035, А1775, А1831 и А1569, их подсистемы являются независимыми скоплениями, лежащими вблизи хаббловской зависимости между красным смещением и расстоянием.

Ключевые слова: галактики: скопления галактик: А1569

1. ВВЕДЕНИЕ

Это четвертая, завершающая, статья нашей серии работ, посвященной изучению скоплений галактик с бимодальным распределением лучевых скоростей, в которой мы исследуем скопление А1569. Его бимодальность была установлена в работе [1] по 56 галактикам, для которых были измерены лучевые скорости. Ранее нами была определена структура скоплений А1035 [2], А1775 [3] и А1831 [4]. Все они оказались проекцией вдоль луча зрения двух независимых скоплений. Скопление А1569 вместе с более богатым скоплением А1589 образуют небольшое сверхскопление SC271 [5] размером (в проекции) около 10 Мпк. Это сверхскопление было также выделено в [6] как объект с достаточно высоким контрастом плотности по распределению галактик в обзоре SDSS, а его морфология изучена в [7]. Имея ввиду, возможно, достаточно сильное гравитационное взаимодействие между членами сверхскопления, мы определили расстояние и массу также для скопления А1589.

Основной целью данной работы было определение структуры скопления А1569 — расстояния между его подсистемами вдоль луча зрения с применением нескольких способов оценки прямых расстояний по галактикам ранних типов. Кроме того, мы оценили динамическую массу подсистем скопления A1569 и скопления A1589, а также отношение массы к *К*-светимости. Нами использовался наш собственный наблюдательный материал, полученный на 1-м телескопе CAO PAH, и данные из каталога SDSS DR7 (Sloan Digital Sky Survey Data Release 7) [8]. Для определения инфракрасной светимости скоплений мы привлекали данные каталога 2MASX [9].

Статья организована следующим образом. Во втором разделе представлены основные характеристики двух подсистем скопления A1569, соответствующих пикам в распределении лучевых скоростей: A1569A и A1569B, а также скопления A1589. В третьем разделе представлены выборки галактик ранних типов, использовавшиеся для измерения расстояний. В четвертом определяются прямые расстояния до подсистем в A1569 и относительное расстояние между ними и скоплением A1589. В заключении обсуждаются результаты данной работы и кратко подводятся итоги всей серии наших работ. В работе мы использовали следующие

Рис. 1. Распределение лучевых скоростей галактик в A1569 в пределах 45' от ярчайшей галактики скопления (12^h36^m08^s, +16°38'29"). Штриховой гистограммой показано распределение в пределах R₂₀₀ для каждой из подсистем.

космологические параметры: $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.7$, $H_0 = 70$ км с⁻¹ Мпк⁻¹.

2. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СКОПЛЕНИЙ А1569 и А1589

В каталоге Эйбелла [10] скопление A1569 имеет класс богатства 0 ($N_A = 40$) и z = 0.0784. Начиная с 1981 года скопление изучалось в основном в рентгеновском и радио- диапазонах.

В рентгеновском диапазоне скопление наблюдалось на обсерватории *Einstein* [11, 12] и со спутника ROSAT [13]. Была обнаружена сложная многокомпонентная структура, дававшая основание рассматривать скопление как объект, находящийся в процессе формирования — слияния субскоплений. Интегральная светимость скопления по разным измерениям (Einstein, ROSAT) составляет $(0.2-0.6) \times 10^{44}$ эрг/с, при пересчете в диапазон 0.1-2.4 keV для определенного нами красного смещения. Но, основываясь на данных с более высоким угловым разрешением из архива рентгеновского телескопа Chandra, полученным по программе [14], можно грубо оценить, что около половины излучения связано с точечными источниками, а не с горячим газом скопления. По наблюдениям с Chandra в субскоплении A1569B доминирует точечный источник, связанный с ярчайшей галактикой этого субскопления ІС3557, а основной протяженный источник ассоциируется с центральным сгущением галактик в субскоплении А1569А.

В области обоих субскоплений располагаются источники радиоизлучения, которые связаны с ярчайшими центральными галактиками A1569A и A1569B. Причем радиоисточник в субскоплении A1569A по своей морфологии относится к объектам с отклоняющимися в одну и ту же сторону протяженными "хвостами" (WAT — wide-angle tailed), но при этом имеет небольшую лучевую пекулярную скорость относительно средней скорости скопления. Это объясняется, согласно [1], тем, что в этом скоплении в результате столкновения скопления с субскоплением происходит натекание газа на медленно движущуюся радиогалактику, то есть скопление A1569A находится в динамически активной фазе своей эволюции.

Данные каталога SDSS DR7 позволяют достаточно надежно, по большему, чем в [1], числу галактик с измеренными лучевыми скоростями, выделить две основные подсистемы в скоплении: A1569A и A1569B. Это видно из распределения лучевых скоростей в области скопления, в пределах 45' от выбранной в качестве центра ярчайшей галактики A1569B (Рис. 1).

Скопление А1589 в каталоге Эйбелла [10] имеет класс богатства 0 ($N_A = 38$), z = 0.0718 и тип II-III по классификации Bauts-Morgan. Скопление хорошо изучено в оптической, радио и рентгеновской областях и, по данным SDSS, является более богатым скоплением, чем по оценке Эйбелла.

Свойства скоплений	A1569A	A1569B	A1589
lpha (J2000), hh mm ss	12 36 25.78	12 36 08.14	12 41 17.47
δ (J2000), dd mm ss	+16 32 18.3	+16 38 29.2	+18 34 28.5
z_h	0.068759	0.079331	0.071955
cz_h , км/с	20613	23783	21571
σ , KM/C	484 ± 84	493 ± 99	778 ± 74
<i>R</i> ₂₀₀ , Мпк	1.16	1.18	1.86
N_{200}	32	25	109
$M_{200}, 10^{14} M_{\odot}$	1.84 ± 0.96	2.00 ± 1.20	7.89 ± 2.25
$L_{200}, 10^{12} L_{\odot}$	2.71 ± 0.3	2.86 ± 0.4	10.99 ± 0.4
$M/L_K, M_\odot/L_\odot$	68 ± 37	70 ± 44	72 ± 21
$L_x(0.1 - 2.4 \mathrm{keV}), 10^{44} \mathrm{spr/c}$	0.2:	_	1.7

Таблица 1. Данные для скоплений

Чтобы детальнее охарактеризовать структуру и кинематику каждого из скоплений, а также его ближайших окрестностей, на Рис. 2, 3, 4 на четырех панелях представлены:

- отклонение лучевых скоростей галактик членов скопления и галактик, отнесенных к фону, от средней лучевой скорости скопления в зависимости от квадрата радиуса (углового расстояния от центра скопления);
- 2) интегральное распределение числа галактик в зависимости от квадрата радиуса для наглядного выявления плотного ядра скопления, более разреженного гало и внешней области, где распределение выходит на линейную зависимость в выбранных координатах, то есть наблюдается однородное в среднем распределение галактик окружения; наклонная прямая линия проведена на глаз через точки распределения во внешней области, ее наклон характеризует среднюю плотность фона (число галактик на квадратную угловую минуту), а пересечение с осью ординат — населенность скопления; они составляют 0.0142 и 30 (А1569А), 0.0020 и 33 (А1569В) и 0.0076 и 106 (А1589);
- расположение галактик в картинной плоскости в экваториальных координатах;
- гистограмма распределения лучевых скоростей для всех галактик в пределах радиуса *R*₂₀₀ (для нее показана функция Гаусса, соответствующая дисперсии скоростей скопления из Табл. 1). Штриховой линией показано распределение галактик ранних типов.

Динамическая масса скоплений определялась по дисперсии лучевых скоростей галактик в предположении, что скопления находятся в вириальном равновесии. Согласно [15], радиус скопления, в пределах которого плотность превышает критическую в 200 раз, близок к вириальному, и его можно оценить по формуле $R_{200} = \sqrt{3}\sigma/(10H(z))$ Мпк. В предположении $M_{
m vir}\simeq M_{200}$ масса в пределах R_{200} равна $M_{200} = 3G^{-1}R_{200}\sigma_{200}^2$. Таким образом, сначала мы оценивали среднюю лучевую скорость скопления cz и ее дисперсию σ , потом по дисперсии — радиус R₂₀₀. Галактики со скоростями больше 2.7 считались фоновыми. Итеративным способом мы нашли все параметры скопления в пределах данного радиуса. Средняя лучевая скорость скопления и среднеквадратичная дисперсия скоростей давали для А1569А завышенную массу (а именно, при $\sigma = 621 \, \text{км/c}$ отношение массы скопления к К-светимости равно 126, что гораздо выше, чем обычно получается (50-60) для скопления такой светимости, поэтому мы в данном случае использовали медианные оценки этих параметров. Негауссовость распределения лучевых скоростей в А1569А может быть связана с тем, что скопление находится в богатом филаменте, включающем два сгущения галактик к западу и востоку от А1569А (правая верхняя панель Рис. 2), и не имеет четкой внешней границы (левая нижняя панель Рис. 2) в отличие от А1569В и А1589. Вследствие продолжающейся аккреции галактик на скопление вдоль филамента и/или возможного недавнего столкновения с субскоплением в А1569А наблюдаются галактики, которые по их кинематике (большому отклонению лучевой скорости от средней для скоп-

Рис. 2. Распределение галактик в А1569А. На *левой верхней* панели показано отклонение лучевых скоростей галактик от средней лучевой скорости скопления, определенной по галактикам в пределах радиуса R_{200} . Горизонтальные штриховые линии соответствуют отклонениям $\pm 2.9\sigma$, вертикальной штриховой линией отмечен радиус R_{200} , пунктирной — радиус Эйбелла (2.143 Мпк). Кружками большего размера отмечены галактики ярче $M_K^* + 1 = -23^m.29$, кружками с точкой внутри — галактики ранних типов, плюсами — галактики заднего фона, крестиками — галактики переднего фона. На *левой нижней* панели дано интегральное распределение полного числа галактик в зависимости от квадрата углового расстояния от центра скопления. Кружки соответствуют кружкам на левой верхней панели, звездочки — галактикам фона. На *правой верхней* панели показано распределение на небе в экваториальной системе координат галактик, которые представлены на верхней левой панели (обозначения те же). Кругами выделены области с радиусом R_{200} (штрихи) и радиусом Эйбелла (пунктир). Область исследования ограничена кругом с радиусом, равным 45' (сплошная линия). Большим крестом отмечен центр скопления. Три соседних сгущения галактик очерчены кругами с радиусом, равным 12'.7 (1.0 Мпк). На *правой нижней* панели представлено распределение поледиих сущения галактик очерчены кругами с радиусом, равным 12'.7 (1.0 Мпк). На *правой нижней* панели представлено распределения показана гауссиана, соответствующая дисперсии скоростей скопления) и галактик ранних типов (штриховая линия). Сплошная линия указывает среднюю линией скопления, пириховые линии соответствуют отклонения $\pm 2.9\sigma$.

ления) не могут быть отнесены к вириализованной части скопления. Медианная оценка дисперсии скоростей позволяет получить физически более оправданную величину вириальной дисперсии, поскольку она лучше согласуется как с отношением массы к K-светимости, так и с температурой рентгеновского газа в скоплении (2.51 keV, [16]).

В Таблице 1 представлены следующие параметры скоплений, определенные нами для области радиусом R_{200} , по данным каталога SDSS, дополненным тремя измерениями лучевых скоростей в скоплении A1569A, двумя измерениями в скоплении A1569B и одним измерением в A1589 из базы данных NED: экваториальные координаты галактик на эпоху J2000; гелиоцентрические красное смещение и лучевая скорость галактик; дисперсия лучевых скоростей с космологической поправкой $(1 + z)^{-1}$; радиус R_{200} в мегапарсеках; количество галактик с измеренными лучевыми скоростями ($r_{\rm pet} < 17^m.77$); масса скопления M_{200} и светимость L_{200} в фильтре K_s (далее просто K); отношение массы скопления к полной K-светимости; рентгеновская светимость в полосе 0.1-2.4 keV. Приведенные ошибки соответствуют ошибке определения σ . Полные светимости скоплений в K-полосе вычислены по галактикам ярче

Рис. 3. То же, что и на Рис. 2, для A1569B. Ограничения по скорости штриховыми линиями на *левой верхней* и *правой* нижней панелях соответствуют отклонениям ±2.7 σ .

 $M_{K,\lim} = -21^m$. Методика определения светимости описана в [17].

3. ХАРАКТЕРИСТИКИ ГАЛАКТИК РАННИХ ТИПОВ

В этом разделе мы описываем наблюдательные данные — параметры галактик ранних типов, которые были использованы нами для определения расстояний до подсистем в скоплении A1569.

3.1. Параметры галактик ранних типов, полученные на 1-м телескопе

Мы определили фотометрические характеристики 19 галактик в А1569 по прямым снимкам в фильтре R_c (система Крона-Казинса), полученным нами на 1-м телескопе САО РАН в апреле 1999 года. Для наблюдений были отобраны галактики с морфологией раннего типа, определенной визуально по картам Паломарского атласа неба, с известными на тот момент времени лучевыми скоростями из работы [1].

Снимки были получены при среднем качестве изображений 1".5 Использовалась ПЗС-матрица

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 67 № 1 2012

типа ISD015A формата (520×580) с размером элемента 18×24 мкм, что соответствует угловому размеру $0.28'' \times 0.37''$. Время экспозиции составляло 500 сек. Наблюдения стандартных звезд Ландолта [18] проводились несколько раз в течение каждой ночи, чтобы обеспечить фотометрическую привязку снимков.

Наблюдательный материал обрабатывался с помощью MIDAS. Применялась стандартная процедура обработки снимков: вычитание медианного темнового кадра, деление на плоское поле и вычитание фона неба, аппроксимированного поверхностью второй степени. Методом многоапертурной фотометрии определялась полная (асимптотическая) величина галактики. Затем по полной величине находился эффективный радиус Re круговой апертуры, в пределах которой светимость галактики уменьшается вдвое, и эффективная поверхностная яркость μ_e на этом радиусе. Характеристика формы профиля поверхностной яркости п определялась путем подгонки профиля Серсика [19] $R^{1/n}$ к наблюдаемому профилю в диапазоне от радиуса, равного 3 FWHM (для уменьшения влияния качества изображения), до радиуса, на котором поверхностная яркость составляла

Рис. 4. То же, что и на Рис. 2, для А1589.

24—25 mag/\Box'' . Полученные фотометрические параметры галактик R_e , μ_e были скорректированы за качество изображения методом, описанным в работе [20]. Таким образом, в нашей работе использованы модельно независимые параметры галактик (R_e , μ_e), определенные по полной асимптотической величине, и модельно зависимая величина n.

Результаты наших фотометрических измерений приведены в Табл. 2. В ней представлены следующие данные для галактик: номер скопления по каталогу [10]; экваториальные координаты галактик на эпоху J2000; гелиоцентрические красное смещение и лучевая скорость (по данным SDSS или NED); полная асимптотическая величина в фильтре R_c ; эффективный радиус галактики в дуговых секундах; эффективная поверхностная яркость на эффективном радиусе; параметр формы профиля Серсика *n* с его ошибкой.

3.2. Параметры галактик ранних типов по каталогу SDSS

Нами составлена выборка галактик ранних типов в скоплениях A1569A и A1569B по данным

каталога SDSS DR7 (фильтр r) для построения фундаментальной плоскости (ФУП). Галактики были отобраны по тем же критериям, что и в наших предыдущих работах [2-4]. Для того, чтобы уменьшить влияние ошибок определения дисперсии скоростей звезд и параметров профиля де Вокулера, мы отбирали только объекты с $\sigma > 100$ км/с и эффективным радиусом более 1". Всего отобрано 16 галактик в А1569А и 10 в А1569В в пределах соответствующих радиусов R₂₀₀. В Табл. З приведены следующие данные для этих галактик: экваториальные координаты на эпоху J2000; гелиоцентрические красное смещение и лучевая скорость; центральная дисперсия скоростей звезд σ ; параметры профиля де Вокулера: полная величина с вычетом поглощения в фильтре *r* и эффективный радиус, равный размеру большой полуоси, умноженному на $\sqrt{(b/a)}$; $fracDeV_r \ge 0.8$ — величина, характеризующая вклад балджа де Вокулера в полную светимость галактики; $r_{90}/r_{50} \ge 2.6$ индекс концентрации, равный отношению радиусов, содержащих 90% и 50% потоков Петросяна; eClass < 0 — параметр, характеризующий спектр галактики: отрицательные величины соответствуют спектрам без заметных эмиссионных линий; рас-

Скопл.	$\alpha, \delta(J2000)$	z_h	cz_h	m_R	R_e	μ_e	n	R
	hh mm ss dd mm ss		км/с	зв.вел.	угл.сек.	зв.вел./□″		угл.мин.
A1569A	123625.78+163218.3	0.068464	20525	14.76	3.86	20.82	4.16 ± 1.08	0.00
	123624.53+163222.7	0.066616	19971	15.43	2.91	20.85	5.03 ± 1.53	0.31
	123627.87+163204.1	0.068017	20391	16.00	2.07	20.63	2.14 ± 0.46	0.55
	123630.72+163119.1	0.064523	19344	16.19	2.54	21.13	-	1.54
	123614.69+163255.7	0.069464	20825	15.81	1.97	20.11	1.63 ± 0.17	2.67
	123613.78+163242.3	0.068754	20612	16.51	1.97	20.81	-	2.90
	123637.50+163344.6	0.073327	21983	15.04	3.91	20.90	2.14 ± 0.8	3.16
	123605.13+163219.1	0.070494	21134	16.26	1.90	20.56	-	4.95
	123637.63+163629.9	0.071303	21376	16.84	1.65	20.66	-	5.06
	123637.29+163857.4	0.069234	20756	15.58	3.40	20.94	2.75 ± 0.43	7.20
	123617.71+162426.8	0.070999	21285	15.16	4.66	21.38	1.73 ± 0.10	8.09
	123524.29+163511.3	0.071161	21334	15.59	2.44	20.35	1.14 ± 0.11	15.01
A1569B	123608.13+163829.2	0.078900	23654	13.23	20.98	22.90	3.18 ± 0.20	0.00
	123608.50+163850.6	0.075320	22580	15.96	2.46	20.67	-	0.37
	123607.92+163851.8	0.080666	24183	16.42	1.90	20.55	-	0.38
	123554.29+163939.1	0.081094	24311	15.98	1.96	20.29	3.38 ± 0.65	3.52
	123626.33+163658.0	0.081302	24374	15.59	3.03	20.86	3.75 ± 2.89	4.62
	123632.21+163923.4	0.078082	23408	16.18	2.12	20.73	-	5.84
	123624.31+162320.6	0.078812	23627	16.42	1.82	20.74	-	15.63

Таблица 2. Параметры галактик ранних типов, полученные на 1-м телескопе

стояние галактики от центра скопления в угловых минутах; расстояние галактики, определенное по фундаментальной плоскости. Звездочками в Таблице помечены три галактики, которые нами не использовались для определения расстояния скопления А1569А. Эти три галактики (одна яркая и две слабые), имеющие сильно отклоняющиеся расстояния (приведены в Таблице), расположены вблизи центра скопления А1569А. Возможное объяснение их отклонения состоит в том, что при слиянии субскоплений (об этом упоминалось выше) галактики, проходящие вблизи центра скопления, где высока плотность галактик, в результате приливного взаимодействия могут потерять свои внешние области и будут выглядеть более компактными, чем ожидается для их центральной дисперсии скоростей звезд, которая практически не изменяется при приливном взаимодействии.

Как и в предыдущих работах, для определения расстояний до исследуемых скоплений мы ис-

пользовали параметры галактик ранних типов и зависимости между ними: соотношение Корменди, фотометрическую плоскость (ФОП) и фундаментальную плоскость (ФУП). Соотношение Корменди в фильтре R_c для большой выборки галактик имеет вид: $\log R_e = 0.38 \mu_e + \gamma$. На Рис. 5 (слева) показано это соотношение для 12 наблюдавшихся нами галактик в А1569А и 7 галактик в А1569В. Определение расстояний до скоплений по соотношению Корменди [21], исправленному за зависимость остаточных отклонений от величины галактики, подробно описано в нашей работе [22], где мы аппроксимировали зависимость остаточных отклонений от величины галактики полиномом второй степени и вводили соответствующую поправку в определяемые нуль-пункты (рассто-

4. ОПРЕДЕЛЕНИЕ РАССТОЯНИЙ

ПОДСИСТЕМ В А1569

КОПЫЛОВ, КОПЫЛОВА

Г аблица 3. Па	раметры	галактик	ранних	типов	ИЗ	каталога	SI	DS	S	
-----------------------	---------	----------	--------	-------	----	----------	----	----	---	--

Скопл.	$\alpha, \delta(J2000)$	z_h	cz_h	σ	m_r	R_e	$frDeV_r$	r90/r50	eClass	R	γ
	hh mm ss dd mm ss		км/с	км/с	3B.B.	угл.с.				угл.м.	
*	123626.71+163112.0	0.068162	20434	135	17.42	1.30	1.00	2.87	-0.15	1.13	-8.419
A1569A	123624.76+163048.8	0.066213	19850	154	16.85	1.22	1.00	3.03	-0.14	1.51	-8.301
	123630.72+163119.1	0.064523	19344	143	16.55	1.92	1.00	3.09	-0.14	1.54	-8.264
*	123615.66+163131.5	0.068025	20393	140	17.47	1.32	0.95	2.91	-0.14	2.55	-8.456
*	123622.42+162947.8	0.069262	20764	203	16.39	2.38	1.00	3.08	-0.16	2.63	-8.436
	123614.69+163255.7	0.069464	20825	225	15.92	2.03	0.89	3.01	-0.16	2.67	-8.316
	123613.78+163242.3	0.068754	20612	131	16.62	1.78	1.00	3.01	-0.13	2.90	-8.224
	123637.50+163344.6	0.073327	21983	265	15.33	3.84	1.00	3.39	-0.16	3.16	-8.347
	123637.31+163351.9	0.072812	21828	126	16.89	1.83	1.00	3.32	-0.11	3.17	-8.293
	123615.80+163535.1	0.069263	20765	105	17.44	1.67	1.00	2.84	-0.15	4.06	-8.346
	123605.13+163219.1	0.070494	21134	143	16.48	1.64	1.00	2.89	-0.13	4.95	-8.211
	123646.64+163154.6	0.064256	19263	128	16.80	2.16	0.81	2.86	-0.13	5.02	-8.305
	123559.72+163533.7	0.070434	21116	136	15.85	3.90	0.88	2.88	-0.16	7.04	-8.167
	123617.71+162426.8	0.070999	21285	192	15.53	4.22	1.00	2.98	-0.18	8.09	-8.264
	123539.80+162626.5	0.068688	20592	163	15.97	3.42	0.93	3.28	-0.16	12.48	-8.269
	123704.12+162310.0	0.068354	20492	113	17.56	1.03	0.95	2.74	-0.12	12.96	-8.324
A1569B	123605.74+163828.8	0.078273	23466	120	17.43	1.62	1.00	2.92	-0.12	0.57	-8.406
	123614.49+163902.8	0.080492	24131	122	16.65	1.80	0.96	2.99	-0.11	1.62	-8.200
	123554.29+163939.1	0.081094	24311	176	16.15	2.23	0.86	2.99	-0.15	3.52	-8.280
	123626.33+163658.0	0.081302	24374	234	15.92	2.48	1.00	3.18	-0.15	4.62	-8.376
	123554.62+164203.6	0.080468	24124	145	17.04	1.75	1.00	3.11	-0.13	4.82	-8.399
	123632.21+163923.4	0.078082	23408	155	16.63	1.60	1.00	2.77	-0.11	5.84	-8.293
	123553.56+163258.0	0.079508	23836	107	17.60	1.56	1.00	2.88	-0.12	6.53	-8.390
	123603.69+164458.9	0.079550	23848	117	17.17	1.43	0.86	2.61	-0.11	6.58	-8.290
	123543.11+164419.2	0.079679	23887	156	16.15	3.19	0.96	2.76	-0.12	8.36	-8.290
	123645.73+164132.0	0.077869	23345	114	17.25	1.36	1.00	2.78	-0.10	9.51	-8.291

яния). По оси абсцисс на Рис. 5 указаны определенные по данным наших наблюдений $\log R_e$ в угловых секундах, исправленные за качество изображения. В поверхностные яркости (ось ординат) не введены космологические поправки. Линии на Рисунке соответствуют усредненным (по всем галактикам соответствующей подсистемы) нульпунктам соотношений, которые представлены в Табл. 4. Разность нуль-пунктов для соотношения Корменди равна $\Delta \gamma_{KR} = 0.032 \pm 0.045$. После введения поправки за зависимость от величины галактики — $\Delta \gamma_{KRm} = 0.071 \pm 0.027$. Для хаббловской зависимости наблюдаемой разности лучевых скоростей соответствует разность нульпунктов $\Delta \gamma_{\rm H} = 0.069$.

Фотометрическая плоскость (ФОП) получается из фундаментальной плоскости галактик ранних типов, если спектрально измеряемый пара-

Рис. 5. Соотношение Корменди (слева) и фотометрическая плоскость (справа) для галактик ранних типов в A1569A и A1569B, по измерениям на 1-м телескопе. Сплошная линия соответствует среднему нуль-пункту для A1569A, штриховая — для A1569B.

	A1569A	A1569B	A-B
Нуль-пункт	Среднее	Среднее	
γ_{KR}	$-7.581 \pm 0.033, N = 12$	$-7.613 \pm 0.031, N = 7$	0.032 ± 0.045
γ_{KRm}	$-7.423 \pm 0.018, N = 12$	$-7.494 \pm 0.020, N = 7$	0.071 ± 0.027
γ_{PP}	$-5.812 \pm 0.045, N = 8$	$-5.869 \pm 0.096, N = 3$	0.057 ± 0.106
$\gamma_{FP(r)}$	$-8.279\pm0.015, N=13$	-8.322 ± 0.021 , N = 10	0.043 ± 0.026

Таблица 4. Относительные расстояния скоплений

метр, центральную дисперсию скоростей звезд в галактике, заменить на фотометрически измеряемый параметр Серсика n, который характеризует форму профиля поверхностной яркости. В наших предыдущих работах [2, 3] мы подробно описали применение ФОП для определения расстояний. На Рис. 5 (справа) приведена ФОП для восьми галактик в А1569А и трех галактик в А1569В, а значения средних нуль-пунктов приведены в Табл. 4. Разность средних нуль-пунктов равна $\Delta \gamma_{PP} = +0.057 \pm 0.106.$

Поскольку статистическая точность оценки расстояния зависит от числа используемых галактик, наиболее надежный результат может быть получен с помощью ФУП, построенной по данным SDSS. Для построения ФУП средняя эффективная поверхностная яркость вычислялась по формуле: $< \mu_e >= (m_r - \text{extinction}) + 2.5 \log(2\pi R_e^2)$. Центральная дисперсия скоростей σ и эффективный радиус приведены к круглой апертуре согласно [23]: $\sigma_{\text{согr}} = \sigma_{\text{est}} (r_{\text{fiber}}/r_o/8)^{0.04}$, где $\sigma_{\text{est}} -$ измеренное значение дисперсии, r_{fiber} равен для данных SDSS 1."5 и $r_o = r_e \sqrt{(b/a)}$, где $r_o -$

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 67 № 1 2012

эквивалентный эффективный радиус круга, а re — эффективный радиус вдоль большой оси галактики. На Рис. 6 приведена ФУП для 13 (З галактики, обозначенные звездами, мы не использовали) и 10 галактик скоплений А1569А и А1569В, отобранных в пределах соответствующих радиусов R₂₀₀. На Рис. 6 также показаны галактики скопления А1589 (N=31), отобранные аналогичным образом. Их параметры определялись так же, как для галактик А1569. Линии на Рис. 6 соответствуют усредненным нуль-пунктам скоплений прямой регрессии относительно log R_e. В работе Бернарди и др. [24] форма этой регрессии получена по 9000 галактикам из каталога SDSS: $\log R_e = 1.17 \log \sigma + 0.30 < \mu_e > +\gamma$. Ha Puc. 7 приведены индивидуальные расстояния (нульпункты γ) галактик в зависимости от лучевой скорости. Жирной кривой показана ожидаемая хаббловская зависимость между лучевой скоростью и расстоянием, рассчитанная для принятой нами модели и общего нуль-пункта ФУП, равного -8.042 для изучаемых бимодальных скоплений галактик, привязанного к нуль-пункту [24]. Разность

Рис. 6. Фундаментальная плоскость для галактик ранних типов, расположенных в пределах радиуса R_{200} , в A1569A и A1569B (данные SDSS DR7). Остальные обозначения те же, что и на Рис. 5. Звездочками показаны галактики скопления A1569A, отклоняющиеся от среднего нуль-пункта более, чем на 3σ . Плюсами показаны галактики скопления A1589, а пунктирной линией — его нуль-пункт.

Рис. 7. Зависимость индивидуальных расстояний, нуль-пунктов фундаментальной плоскости γ от лучевой скорости для галактик ранних типов, расположенных в пределах R_{200} , в A1569A, A1569B и A1589 (данные SDSS). Обозначения те же, что и на Рис. 6. Жирная кривая линия соответствует хаббловской зависимости между лучевой скоростью и расстоянием. Вертикальными линиями показаны средние лучевые скорости скоплений (Табл. 1), горизонтальными средние нуль-пункты скоплений.

Рис. 8. Диаграмма Хаббла для бимодальных скоплений: квадратами обозначены скопления А1035А, А1035В; кружками — А1569А, А1569В; треугольниками — А1775А, А1775В; звездочками — А1831А, А1831В; большой звездой показано положение скопления А1589.

средних нуль-пунктов скоплений для исследуемых радиусов равна $\Delta \gamma_{FPr} = 0.013 \pm 0.029 \ (N=16)$. Если исключить три галактики в A1569A (помеченные звездочкой в Табл. 3), отклоняющиеся больше, чем на 3σ от среднего значения, то $\Delta \gamma_{FPr} = +0.043 \pm 0.026 \ (N=13)$ (эти значения даны в Табл. 4). Скопление A1589 имеет $\gamma_{FPr} = -8.274 \pm 0.014 \ (N=31)$ и располагается практически на хаббловской зависимости.

Таким образом, два метода с наилучшей точностью измерения разности расстояний: соотношение Корменди с поправкой за величину и фундаментальная плоскость, -- позволяют с уровнем значимости 1% и 5%, соответственно, отвергнуть предположение, что подсистемы в скоплении А1569 находятся приблизительно на одном и том же расстоянии и составляют гравитационно взаимодействующую пару субскоплений. Исходя из того, что А1569В и А1589 находятся на хаббловской зависимости, а А1569А находится ближе к А1589 и по лучу зрения и по лучевой скорости, чем к А1569В, можно предположить, что скопление А1569А находится, главным образом, под гравитационным влиянием более массивного скопления А1589, а также связанного с последним сверхскопления. В этом случае находит естественное объяснение также пекулярная скорость скопления А1569А относительно А1589, равная -960 км/с. Тогда как для объяснения разности скоростей 3170 км/с в системе А1569А и А1569В требуется масса в несколько раз превышающая суммарную вириальную массу этих скоплений.

5. ВНУТРЕННЯЯ СТРУКТУРА СКОПЛЕНИЙ А1569А И А1569В

Анализ Рис. 2 и 3 позволяет предположить, что в обоих скоплениях еще не наступила полная релаксация. А1569А находится в стадии формирования в богатом филаменте в окружении нескольких крупных сгущений галактик, и, видимо, продолжается падение галактик и групп галактик из филамента в центр скопления. На Рис. 2 (слева вверху) в центре А1569А видны две галактики, отклоняющиеся от средней лучевой скорости скопления более, чем на 2.7σ . Это пара галактик, расположенная в З' от ярчайшей галактики скопления, на конце северного хвоста WAT-радиоисточника, и имеющая пекулярную скорость примерно 1300 км/с. Возможно, она является центральной частью группы, недавно прошедшей через ядро скопления А1569А. Эллиптическая галактика в этой паре сравнима по яркости с ярчайшей галактикой центрального сгущения скопления, является слабым радиоисточником, а в рентгене [14] содержит компактный центральный источник и небольшую асимметричную протяженную оболочку — возможный остаток газовой атмосферы группы, внешние части которой были потеряны при пролете через скопление.

Хотя скопления А1569А и А1569В имеют примерно равные массы, вычисленные по дисперсии скоростей, они очень сильно различаются по светимости горячего газа в рентгеновском диапазоне. В А1569В доминирует точечный источник, связанный с активным ядром ярчайшей галактики, а протяженное рентгеновское излучение этого скопления очень слабое [14]. Возможное объяснение этому состоит в том, что скопление А1569В лишь частично вириализовано — на это указывает двугорбое распределение скоростей на Рис. 3 (справа внизу), а также тот факт, что рядом с ярчайшей галактикой скопления имеется две галактики с большой пекулярной скоростью -1200 км/с. Таким образом, несоответствие массы и светимости в рентгене можно, по крайней мере частично, объяснить переоценкой массы вириализованной части скопления, если ее оценивать по дисперсии скоростей галактик формирующегося скопления. Если исключить две указанные галактики, то получаем дисперсию скоростей 389 км/с, массу $1.0 \times 10^{14} M_{\odot}$ и $M/L_{K} = 43$. Полученные значения массы и светимости скопления соответствуют друг другу и результатам, приведенным нами для выборки скоплений галактик в [17].

6. ЗАКЛЮЧЕНИЕ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В данной работе мы исследовали скопление A1569, чтобы получить ответ на вопрос о пространственной близости его подсистем, оценив расстояние между ними. Мы измерили фотометрические

АСТРОФИЗИЧЕСКИЙ БЮЛЛЕТЕНЬ том 67 №1 2012

параметры $(m_R, \mu_e, \log(R_e), n)$ девятнадцати галактик ранних типов в полосе R_c для подсистем А1569А и А1569В на 1-м телескопе САО РАН. По этим данным построены соотношение Корменди и фотометрическая плоскость для галактик ранних типов. По данным каталога SDSS DR7 были определены основные физические параметры подсистем скопления А1569, а также соседнего более массивного скопления А1589, и построена фундаментальная плоскость для галактик ранних типов в фильтре r. Измеренные с помощью соотношения Корменди, фотометрической и фундаментальной плоскостей расстояния позволили нам определить взаимное пространственное расположение трех скоплений. Основной вывод относительно скопления А1569 заключается в том, что оно с большой вероятностью состоит из двух независимых скоплений, А1569А и А1569В (с уровнем значимости 5% отвергается гипотеза, что подсистемы расположены на одном и том же расстоянии, для наиболее надежного способа определения расстояний — с помощью фундаментальной плоскости). При этом А1569В находится на соответствующем его лучевой скорости хаббловском расстоянии, а А1569А, вероятнее всего, находится в сфере влияния более массивного скопления А1589.

Статья завершает наше исследование четырех эйбелловских скоплений A1035, A1569, A1775 и A1831 с бимодальным распределением лучевых скоростей галактик, с красными смещениями подсистем в диапазоне z = 0.063 - 0.079 и разностью скоростей между подсистемами 2700-3500 км/с. Скопление A1035 — изолированное скопление, A1775 и A1831 расположены в сверхскоплении Волопас, а A1569 вместе с A1589 составляют небольшое сверхскопление.

На Рис. 8 мы приводим сводную диаграмму Хаббла для всех изученных нами скоплений. Ее анализ позволяет сделать вывод, что все скопления находятся на расстояниях, соответствующих хаббловской зависимости между лучевой скоростью и расстоянием, и показывают незначительные пекулярные скорости (< 500 км/с), за исключением скоплений А1775А и А1569А. Скопление А1775А расположено в непосредственной близости от богатого скопления А1795 (около 5 Мпк в проекции на небо) и поэтому могло приобрести пекулярную скорость 720 ± 780 км/с под влиянием массивного соседа. Скопление А1569А находится (в проекции) на расстоянии примерно 10 Мпк от богатого скопления А1589 и при этом расположено в окружении трех сгущений галактик, которые вместе с ним, возможно, сливаются в одно большое скопление. Довольно большая пекулярная скорость А1569А, равная -1290 ± 630 км/с, в принципе, может быть

объяснена при помощи модели достаточно массивного сжимающегося сверхскопления, но детальное рассмотрение такой модели выходит за рамки нашего исследования.

БЛАГОДАРНОСТИ

Авторы благодарны Российскому Фонду Фундаментальных Исследований за частичную поддержку этой работы (грант 07-02-01417а). Работа выполнена с использованием баз данных: NASA/IPAC Extragalactic Database (NED, http://nedwww.ipac.caltech.edu/), Sloan Digital Sky Survey (SDSS, http://www.sdss.org/), Two Micron All Sky Survey (2MASS, http://www. ipac.caltech.edu/2mass/releases/allsky/). Работа проводилась при финансовой поддержке Министерства образования и науки РФ (госконтракт 16.518.11.7073).

СПИСОК ЛИТЕРАТУРЫ

- P. L. Gomez, M. J. Ledlow, J. O. Burns, et al., Astronom. J. 114, 1711 (1997).
- A. I. Kopylov and F. G. Kopylova, Astrophysical Bulletin 62, 311 (2007), astro-ph/09122501.
- A. I. Kopylov and F. G. Kopylova, Astrophysical Bulletin 64, 207 (2009), astro-ph/09122506.
- 4. A. I. Kopylov and F. G. Kopylova, Astrophysical Bulletin **65**, 205 (2010)
- M. Einasto, J. Einasto, E. Tago, et al., Astronom. J. **122**, 2222 (2001).

- L. J. Liivamägi, E. Tempel, E. Saar, et al., ArXiv:1012.1989 (2010).
- M. Einasto, L. J. Liivamägi, E. Tago, et al., ArXiv:1105.2124 (2011).
- K. N. Abazajian et al., Astrophys. J. Suppl. 182, 543 (2009).
- 9. M. F. Skrutskie et al., Astronom. J. 131, 1163 (2006).
- G. O. Abell, H. G. Jr. Corwin, and R. P. Olowin, Astrophys. J. Suppl. 70, 1 (1989).
- 11. G. O. Burns et al., Astrophys. J. 423, 94 (1994).
- 12. C. Jones and W. Forman, Astrophys. J. **511**, 65 (1999).
- 13. P. L. Gomez, J. Pinkney, J. O. Burns, et al., Astrophys. J. 474, 580 (1997).
- 14. S. Murray, Chandra Proposal, ID 06800010, 9 (2004).
- 15. M. R. Carlberg, H. K. C. Yee, E. Ellingson, et al., Astrophys. J. **485**, L13 (1997).
- K. W. Cavagnolo, M. Donahue, G. K. Voit, and M. Sun, Astrophys. J. Suppl. 182, 12 (2009).
- F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 64, 1 (2009), astro-ph/09122503.
- 18. A. U. Landolt, Astronom. J. **104**, 340 (1994).
- 19. J. L. Sérsic, Bol. Asoc. Argent. Astron. 6, 41 (1963).
- R. P. Saglia, E. Bertschinger, G. Baggley, et al., Monthly Notices Roy. Astronom. Soc. 264, 961 (1993).
- 21. J. Kormendy, Astrophys. J. **218**, 333 (1977).
- 22. F. G. Kopylova and A. I. Kopylov, Astron. Lett. **27**, 345 (2001).
- M. Bernardi, R. K. Sheth, J. Annis, et al., Astronom. J. 125, 1817 (2003a).
- M. Bernardi, R. K. Sheth, J. Annis, et al., Astronom. J. 125, 1866 (2003b).

STRUCTURE OF CLUSTERS WITH BIMODAL DISTRIBUTION OF RADIAL VELOCITIES OF GALAXIES. IV: A1569

A. I. Kopylov, F. G. Kopylova

We report the results of study of the A1569 cluster $(12^{h}36^{m}3, +16^{\circ}35')$ and the neighboring A1589 cluster $(12^{h}41^{m}_{\cdot}3, +18^{\circ}34')$, making up a pair (a supercluster) with a projected size of about 10 Mpc. This study is done within the framework of our program for investigating the galaxy clusters with bimodal velocity distributions (i.e., clusters where the velocities of subsystems differ by more than $\Delta cz \sim 3000$ km/s). In the A1569 cluster we have identified two subsystems: A1569A (cz = 20613 km/s) and A1569B (cz = 23783 km/s). These subsystems have the line-of-sight velocity dispersions of 484 km/s and 493 km/s, and dynamic masses within the R_{200} radius equal to 1.8×10^{14} and $2.0 \times 10^{14} M_{\odot}$, respectively. We directly estimate the distances to these subsystems using three methods applied to early-type galaxies: the Kormendy relation, photometric plane, and fundamental plane. To this end, we use the results of our observations made with the 1-m telescope of the SAO RAS and the data adopted from the SDSS DR7 catalog. We found that A1569 consists of two independent clusters. The A1569B cluster is located at the Hubble distance corresponding to its radial velocity. The A1569A cluster has a peculiar velocity of -1290 ± 630 km/s, which can be explained by the effect of the more massive A1589 cluster (with a mass of $7.9 \times 10^{14} M_{\odot}$) and of the supercluster where it resides. In all the four bimodal clusters that we studied within the framework of our program, A1035, A1775, A1831, and A1569, the subsystems are independent clusters lying close to the Hubble relation between redshift and distance.

Keywords: galaxies: clusters: individual: A1569