УДК 524.316:520.84-74

СПЕКТРОСКОПИЯ ЗВЕЗД В НАЗЕМНОМ УЛЬТРАФИОЛЕТЕ. III: ХРОМОСФЕРЫ И ОБОЛОЧКИ ХОЛОДНЫХ ЗВЕЗД

© 2010 В.Е. Панчук, В.Г. Клочкова, М.В. Юшкин

Специальная астрофизическая обсерватория, Нижний Архыз, 369167 Россия Поступила в редакцию 20 января 2009 г.; принята в печать 3 июля 2009 г.

В историческом плане рассмотрены избранные задачи исследования звездных хромосфер и околозвездных оболочек методами спектроскопии в наземном ультрафиолете. В качестве иллюстраций приведены, в частности, фрагменты спектров, полученных авторами на 6-м телескопе.

Ключевые слова: звезды – свойства, классификация

1. ВВЕДЕНИЕ

Мы продолжаем публикации [1–3], объединяемые техникой и результатами наблюдений звезд в наземном ультрафиолете. В данной работе перечислим избранные исследования хромосфер и околозвездных оболочек холодных звезд.

Возможность наблюдать спектры звездных хромосфер в наземном ультрафиолете основана на двух обстоятельствах. Во-первых, с понижением эффективной температуры поток в виновской области спектра быстро снижается. Во-вторых, большое число абсорбционных линий, формирующихся в атмосфере, блокирует фотосферное излучение, и доля хромосферного излучения возрастает. Отсюда следует, что в коротковолновом диапазоне могут быть участки, где хромосферное излучение преобладает над излучением фотосферы.

Исторически наблюдения звездных хромосфер начались с резонансного дублета Н и К Call, как продолжение работ по спектроскопии солнечной хромосферы.

2. ХРОМОСФЕРНЫЕ ЛИНИИ Н и К Call

Спектроскопия в ядрах дублета предъявляет повышенные требования к уровню рассеянного света в спектрографе, т.к. поток в ядрах этих линий составляет несколько процентов от потока в континууме, например, 4% в ядре К Call в спектре Солнца. По этим причинам задача спектроскопического измерения хромосферной эмиссии в большинстве случаев является предельной, несмотря на то, что исследуются относительно яркие звезды.

Систематические наблюдения резонансного дублета Н и К СаII в спектрах звезд были начаты еще на трехпризменном спектрографе, установленном на 152-см и 254-см телескопах [4]. Призмы из легкого флинта в сочетании с одной из четырех линзовых камер позволили исследовать ядра дублета как у сверхгигантов, так и у карликов. В каталоге [5] уже насчитывалось 426 звезд с эмиссией в линиях Н и К Call. Вскоре был открыт эффект Вилсона-Баппу, согласно которому интенсивность эмиссии коррелирует с абсолютной величиной, причем это соотношение не зависит от спектрального класса [6, 7]. Было выполнено несколько наблюдательных программ. с целью выяснения статистических закономерностей, связывающих свойства хромосфер с другими характеристиками звезд. Так, на короткофокусной $(F = 22 \, \text{см})$ камере спектрографа кудэ 5-м телескопа с дисперсией 38 Å/мм были исследованы звезды рассеянных скоплений [8]. У звезд главной последовательности была обнаружена корреляция интенсивности эмиссий и возраста рассеянного скопления. Это явление интерпретировалось как ослабление хромосферной активности с увеличением возраста звезды. Для измерения эмиссии в ядрах линий Н и К Call 2.5-м телескоп был оснащен специализированным 2-канальным сканером [9], в котором использовалась длиннофокусная (F = 285 см) камера спектрографа кудэ.

Признаки ослабления хромосферной активности с возрастом были получены в [10], где для 325 звезд сделаны сравнения интенсивности эмиссий и параметров галактических орбит. Звезды с сильной эмиссией имеют круговые орбиты с небольшим наклоном к галактической плоскости. Звезды со слабой эмиссией имеют большие эксцентриситеты орбит и большие углы наклона орбит.

Проверка гипотезы нагрева хромосферы потоком механической энергии, идущей от конвективной зоны, сделана в [11]. При продвижении по ГП в сторону холодных звезд все бо́льшая часть энергии переносится конвекцией. Если доля этой энергии, конвертируемая в хромосферную эмиссию, не изменяется, то более холодные звезды ГП должны излучать повышенную эмиссию. Была выполнена проверка гипотезы на звездах Гиад. Эмиссия измерялась в единицах уровня локального континуума. В ходе наблюдений обнаружена переменность потока эмиссии в пределах изменения B–V от 0.45 до 1.25.

Для кассегреновского фокуса 1.5-м телескопа обсерватории Маунт Вилсон был разработан четырехканальный фотоэлектрический спектрометр [12]. Опорные полосы сравнения шириной по 20 Å были центрированы на 3901 и 4001 Å. Ширина полосы, в которой измерялась эмиссия, составляла 1 Å. В течение десяти лет проводился мониторинг 91 звезды главной последовательности в интервале спектральных классов F-M2 [13]. В качестве стандартов были выбраны звезды с минимальной хромосферной активностью. Была обнаружена переменность интенсивности эмиссии, но выявить цикличность, аналогичную цикличности солнечной активности, не удалось.

В [14] проанализированы потоки в полосе шириной 1 А, измеренные для 486 звезд в окрестностях Солнца, и был сделан вывод, что хромосферная активность резко понижается при достижении возраста около 10⁹ лет. Предположения о связи активности с возрастом появлялись со времен пионерской работы [8], но связь уровня хромосферной эмиссии с возрастом впервые продемонстрирована в [15]. Если аппроксимировать эту связь степенным законом, и при этом интерпретировать хромосферную эмиссию только как возрастной индикатор, то получим численность молодых звезд, намного превосходящую численность, определенную по изохронам. Т.е. возрасты, определяемые по изохронам, отличаются от "хромосферных" возрастов. В [16] этот избыток возраста был связан с металличностью [Fe/H].

На рис. 1 приведены фрагменты спектрограмм, полученных на НЭС БТА в области ядер резонансного дублета СаШ звезд разных спектральных классов. Видны эмиссионные детали K2V (3933.2 Å), K2R (3933.6 Å) и самопоглощение на 3933.4 Å, имеющие хромосферное происхождение. Из рис. 1 следует, что измерения интегрального потока в полосе шириной 1 Å захватывают значительную часть излучения, формирующегося вне хромосферы.

Спектроскопические исследования эмиссии в ядрах линий Н и К Call в спектре Солнца [17] показали, что амплитуда интегрального (в полосе шириной 0.5 А) индекса хромосферной активности намного больше амплитуды фотоэлектрического индекса в методе Вогана и Престона [12], измеряемого в полосе шириной 1 Å. Следовательно, спектроскопический мониторинг ядер линий H и K Call может существенно уточнить картину, полученную ранее по фотоэлектрическим измерениям. Спектроскопические наблюдения, выполненные на CES ESO с разрешением $R = 60\,000$ и отношением сигнал/шум 100 > S/N > 30 для звезд, у которых параллаксы известны с точностью не менее 10%, позволили выполнить новую калибровку эффекта Вилсона-Баппу [18].

Интересной задачей является поиск связи между хромосферной активностью и конвекцией. При исследовании активных областей на поверхности Солнца выяснилось, что бисектор линии Fel в спектрах пятна - области с большим магнитным потоком и подавленным конвективным переносом излучения, отличается от бисектора линии, зарегистрированной от спокойной области [19]. Асимметрия не зависит от фактора Ланде используемой линии. В спектре Солнца, асимметрия линий поглощения уменьшается с ростом активности [17], т.е. увеличение площади активных областей, где конвекция подавлена, обнаруживается и по изменениям асимметрии линий в интегральном спектре. Задача измерения асимметрии линий, связанной с конвективными движениями вещества, в спектрах ярких звезд является предельной, т.к. требует спектрального разрешения не ниже $R = 10^5$.

Итак, наблюдения в линиях H и K Call желательно сочетать с наблюдениями неблендированных линий в красной области спектра. Поскольку излучение в линиях H и K Call может быть индикатором хромосферной активности, его полезно сравнивать с излучениенм в линии H_{α}. В [20] показано, что асимметрия линий в спектрах малометалличных звезд выражена сильнее чем у звезд такого же спектрального подкласса и класса светимости, имеющих солнечную металличность. Этот факт полезно сравнить с указаниями на ослабление эмиссий H и K Call у старых звезд.

Предельной задачей является и измерение линейной поляризации эмиссионных компонент H и K CaII. B [21] рассмотрены механизмы формирования линейной поляризации, наблюдаемой при широкополосных фотометрических измерениях холодных звезд, и предложены наблюдательные тесты. В частности, степень линейной поляризации эмиссий H и K CaII должна показывать двойную волну при прохождении активной области от одного края лимба к другому, тогда как интенсивность эмиссии показывает при этом одинарную волну. Эффект модуляции линейной поляризации осевым вращением звезды должен быть сильнее выражен

Рис. 1. (а) Центральная часть профиля линии K Call в спектре 16 Cyg A (G 1.5 Vb), звезды-аналога Солнца. Штрихами отмечены остатки эмиссионного хромосферного профиля, K2V 3933.2 Å и K2R 3933.6 Å.(b) Центральная часть профиля линии K Call в спектре α UMi (F 7 Ib-IIvar). Отмечены остатки эмиссионного хромосферного профиля K2V 3933.1 Å и K2R 3934.0 Å, "размытые" вследствие макротурбулентных движений. (c) Центральная часть профиля линии K Call в спектре α Ori (M 2 Iab). Отмечены компоненты K2V 3932.9 Å и K2R 3934.2 Å, имеющие практически равную интенсивность. Профиль самопоглощения в хромосфере расположен симметрично относительно эмиссионного профиля. Отмечен узкий компонент линии 3930.2 Å, сформированный в околозвездной оболочке. Спектры получены на НЭС БТА.

в участках спектра, перегруженных насыщенными магниточувствительными линиями, т.е. в фиолетовой и ультрафиолетовой областях спектра.

3. ЭМИССИЯ FeII в СПЕКТРАХ М-СВЕРХГИГАНТОВ

История исследования эмиссий других элементов в ультрафиолетовых спектрах холодных звезд начинается с работы [22], где по наблюдениям на кварцевом спектрографе 2.1-м телескопа McDonald с дисперсией 16 Å/мм вблизи 3200 Å в спектрах α Her (M5 II) и α Sco (M1 Ib), в диапазоне 3150-3300 Å обнаружены эмиссионные линии FeII с потенциалами возбуждения от 4.7 до 5.6 эВ. В спектрах более горячих звезд (K2III и K4III) эти эмиссии не обнаружены. Было сделано предположение о корональной природе эмиссий. Эти же эмиссионные линии в спектрах α Ori (M2 Iab) и β Peg (M2 II–III) отмечены в [5]. После ввода спектрографа в фокусе кудэ 3-м телескопа с обратной линейной дисперсией D = 2 Å/мм вблизи 3200 Å были исследованы эмиссии у α Ori (M2 Iab), δ^2 Lyr (M4 II), ρ Per (M4 II–III), R Lyr (gM5), 30 Her (gM6), мириды W And (M7-S8) и углеродной звезды 19 Psc (C6) [23]. Лучевые скорости эмиссий в пределах ошибок измерения согласуются со скоростями, измеренными по абсорбциям. У *β* Ред сильные линии имеют ширину около 0.4A, у α Ori эти линии еще шире - 0.8 Å, т.е. ширина эмиссий коррелирует со светимостью [23]. Широкие эмиссионные линии в спектре α Ori исследованы в [24]. Линии FeII 3185.3, 3186.7, 3193.8, 3196.1, 3210.4, 3227.7, 3277.3 Å показывают самообращение в центре эмиссии. У более слабых линий самообращение не наблюдается. Картина уточнена в [25], где на спектрограммах α Ori с дисперсией 3.4 и 6.7 Å/мм в интервале длин волн 3100-3300 Å было измерено 17 линий FeII мультиплетов № 1, 6 и 7. Относительно фотосферных линий эмиссионные линии оказались сдвинуты в длинноволновую сторону на 5 км/с. От слабых к сильным линиям ширины профилей изменяются от 20 до 80 км/с. Сильные эмиссии имеют самообращение. На рис. 2 представлен фрагмент спектра α Ori, полученного на НЭС БТА, содержащий хромосферные эмиссии FeII. Все эмиссионные линии асимметричны, коротковолновое крыло интенсивнее. В работе [25] была предложена феноменологическая модель: линии формируются в областях падающего материала, размер области составляет 2.5 радиуса звезды, доплеровское уширение 14 км/с. Кроме самопоглощения, линии искажены абсорбциями. Исследования эмиссий FeII приобрели массовый

характер в результате наблюдений 44 гигантов и сверхгигантов классов М и К в фокусах кудэ и Кассегрена 224-см рефлектора обсерватории Мауна Кеа [26]. Из 17 линий были выбраны три неискаженные: 3277.35 (1), 3227.73 (6), 3196.07 (7), по ним вычислялся индекс интенсивности FeII. Обнаружена корреляция между интенсивностью FeII и интенсивностью эмиссионных компонент CaII и H_{α} , формирующихся в околозвездной газовой оболочке. В интервале эффективных температур от 4200 К до 2900 К наблюдается рост эмиссий с понижением температуры.

4. ХРОМОСФЕРЫ УГЛЕРОДНЫХ ЗВЕЗД

Уже в [23] по наблюдениям эмиссий FeII у 19 Psc (C6) было высказано предположение, что структура внешних слоев атмосфер углеродных звезд не должна сильно отличаться от М-звезд. В конце 70-х по заявке F. Querci один из авторов (В.Е.П.) предпринял попытки зарегистрировать хромосферные эмиссии углеродных звезд, наблюдая на ОЗСП БТА с D = 6.7 Å/мм в области 3300-3600 А. Обнаруженные слабые эмиссионные детали были интерпретированы как просветы в частоколе абсорбционных линий спектра молекулярного углерода. Продвинуться в более коротковолновую область не удалось из-за специфической комбинации параметров решетки и порядкоразделительных фильтров (ОЗСП не был приспособлен для наблюдений при $\lambda < 3300$ Å).

Эмиссионные линии FeII 3255.9, 3277.35, 3281.3, 3295.8, 3303.5 Å в спектре углеродной звезды TW Hor были исследованы в течение 4 ночей [27]. Основной проблемой фотометрии хромосферных эмиссий является калибровка по потоку, поэтому время экспозиции в [27] определялось как равное число отсчетов экспонометра, работающего по голубой части спектра. От ночи к ночи были обнаружены изменения интенсивности линий FeII 3277.35 и 3281.3 А. Перечислены возможные причины явления: 1) неоднородности в облачной хромосфере и эволюция активных областей; 2) возбуждение FeII и MgII короткопериодическими акустическими волнами от конвективной зоны, причем отсутствие эмиссии в Call объясняется тем, что в этой области ударные волны еще недостаточно развиты; 3) выход гигантских конвективных пузырей в хромосферу, что может обеспечить переменность на шкале от 10 дней до 6 лет; 4) хромосферные вспышки вследствие перезамыкания магнитных силовых линий (эта модель обсуждалась ранее в [28]). Далее наблюдения TW Hor были продолжены на IUE [29], и обнаружена переменность линии AlII 2670 Å. Эмиссионные спектры хромосфер углеродных звезд

Рис. 2. Фрагмент спектра α Огі, содержащий широкие хромосферные эмиссионные линии FeII 3277.3 Å и FeII 3281.1 Å. Спектр получен на НЭС БТА.

представляют загадку: эмиссии ионов металлов не сопровождаются эмиссией в Н_α и в Н и К СаІІ. По этой причине исключается модель ударной волны, применяемая к миридам спектрального класса М. Предпочтительной оказалась модель возбуждения короткопериодическими акустическими волнами: в области плоского температурного минимума недостаточно энергии для возбуждения эмиссий Н и К CaII, а резкий рост температуры в протяженной хромосфере достаточен для возбуждения Fell и MgII. В работе [30] по наблюдениям на длинноволновой камере IUE с низким разрешением, (1900-3400 A), исследована хромосфера TX Psc. Обнаружены большие вариации эмиссий дублета MgII 2795.5 и 2802.7 Å, а также линий СІІ 2330 Å, FeII 3300 A, с характерными временами от часа до нескольких дней. Поток в континууме при этом оставался неизменным. Переменность в линиях MgII объяснялась как следствие пространственных и временны́х неоднородностей в хромосфере. Полуэмпирическая модель хромосферы TX Psc построена в [31], вычисления проведены в гидростатическом приближении. Сделан вывод, что нижняя хромосфера расширяется со скоростью 50 км/с, тогда как верхняя хромосфера покоится относительно фотосферы.

Возможность наблюдений хромосфер углеродных звезд в наземном ультрафиолете обеспечена сильным поглощением излучения фотосферы в полосах молекулы С₃ и других углеродосодержащих молекул. Если у М-звезд в наземном уль-

тинуума. Несомненная польза спектрофотометрии хромосфер углеродных звезд состоит и в том, что гипотеза возникновения эмиссионного спектра в области высвечивания за фронтом ударной волны была поставлена под сомнение даже на феноменологическом уровне.
5. ЭМИССИОННЫЕ СПЕКТРЫ ДОЛГОПЕРИОДИЧЕСКИХ ПЕРЕМЕННЫХ

трафиолете эмиссии FeII видны на фоне слабо-

го абсорбционного спектра, то у С-звезд уровень

фотосферного излучения достигается труднее, что

приводит к проблеме определения уровня кон-

По сравнению с углеродными звездами, ультрафиолетовый диапазон М- и S-мирид меньше блендирован молекулярными полосами (полосы αсистемы окиси титана - TiO, ослабевают после 4300 A). В [32] спектр мириды R Leo изучен вплоть до 3450 А. Линии FeI мультиплетов 2 и 3 абсорбционные в максимуме блеска, при переходе к минимуму блеска становятся эмиссионными. Линии Fel мультиплетов 72-74, 78 с потенциалом возбуждения нижнего уровня около 2.2 эВ наблюдаются только в эмиссии. Эмиссионный спектр S-мириды R And оказался богаче [33], т.к. у Sзвезд для формирования достаточного количества молекул ТіО недостает свободного кислорода и молекулярный спектр, блендирующий эмиссию, выглядит слабее. Интенсивность эмиссионных линий FeII мультиплета 1, наблюдаемых в диапазоне

Рис. 3. Фрагмент спектра α Ori, содержащий линии холодной околозвездной оболочки. Отмечены линии CrI 3593.49 Å и CrI 3605.33 Å. Узкая, синесмещенная компонента формируется в оболочке, широкая — в атмосфере сверхгиганта. Спектр получен на НЭС БТА.

3200-3300 Å, возрастает к минимуму блеска звезды. В работах [32, 33] впервые был поднят вопрос об искажении эмиссий абсорбционными линиями, формирующимися выше. В [34] по спектрам MSмириды χ Суд проверена гипотеза Боуэна о флуоресцентном возбуждении уровней излучением в линиях резонансного дублета MgII 2795 и 2802 Å. Оказалось, что возбуждаются те уровни, соответствующие переходы с которых дают линии чуть короче (на шкале длин волн) линий дублета MgII. Поэтому в [34] был сделан вывод, что эмиссия в дублете MgII смещена в коротковолновую сторону на 0.4 Å относительно эмиссии в линиях Н и К CaII. Итак, уже к середине века рассматривались механизмы возбуждения эмиссионного спектра, альтернативные гидродинамическим.

Изменения лучевых скоростей мирид с фазой кривой блеска, измеренных по абсорбционным и эмиссионным линиям металлов, не согласуются с классической картиной формирования ударной волны в голове волны сжатия, движущейся в атмосфере. Кроме того, для образования эмиссии в бальмеровских линиях водорода требуются скорости около 40 км/с, что в атмосферах мирид никогда не наблюдается. Форма профилей эмиссионных линий водорода изменяется от периода к периоду, известны случаи, когда водородная эмиссия очень слаба [35]. В [28] были перечислены наблюдаемые эффекты, несовместимые с моделью высвечивания за фронтом ударной волны, и предположено формирование эмиссионного спектра в хромосфере.

6. ОКОЛОЗВЕЗДНЫЕ ОБОЛОЧКИ

Количество линий металлов на единицу длины волны возрастает при продвижении в ультрафиолет. Соответственно увеличивается доля линий, имеющих нулевой (или низкий) потенциал возбуждения нижнего уровня. Часть соответствующих переходов имеет вероятности, достаточные для формирования абсорбций в разреженных холодных околозвездных оболочках.

При наблюдениях на спектрографе фокуса кудэ 2.5-м телескопа обсерватории Маунт Вилсон в спектрах α Ori (полученных в диапазоне 3150—4900 Å, с дисперсией от 1.1 до 3.3 Å/мм) обнаружены и измерены десятки абсорбционных линий металлов в интервале потенциалов возбуждения, преимущественно 0.0—0.15 эВ [24]. Эти линии смещены относительно фотосферных на величину 10 км/с, неизменную уже более полувека. Величина смещения меньше скорости убегания, оцениваемой в 90 км/с.

На рис. 3 приведен фрагмент спектра α Ori, где отмечены две абсорбционные линии околозвездного происхождения CrI 3593.49 Å и 3605.33 Å. Положение этих абсорбций позволяет оценить скорость движения оболочки по лучу зрения (относительно фотосферных компонент), а также оценить

Рис. 4. Фрагменты ультрафиолетового спектра Миры Кита, полученного на ОЗСП БТА. Эмиссионные линии бальмеровской серии водорода изрезаны абсорбциями нейтральных металлов, формирующимися в околозвездной оболочке.

содержание атомов в оболочке. Плотность оболочки мала, так что столкновительными процессами можно пренебречь. Непрерывным поглощением в ультрафиолете также можно пренебречь. Основным процессом формирования абсорбционной линии является рассеяние. Применение кривой роста для чистого рассеяния. Применение кривой роста для чистого рассеяния должно приводить к недооценке числа атомов приблизительно на величину, равную квадрату отношения радиусов оболочки и звезды. Роль многократного рассеяния в стационарной или расширяющейся оболочке можно оценить, сравнивая степень линейной поляризации в профиле линии, сформированной в атмосфере, и в профиле, сформированном в оболочке.

На рис. 4 приведены участки ультрафиолетового спектра Миры Кита, полученного на Основном звездном спектрографе БТА [36]. Видно, что эмиссионные линии изрезаны абсорбциями. Это обстоятельство принципиально ограничивает точность измерения лучевых скоростей по эмиссиям. В [36] путем численного моделирования показано, что эти

абсорбции отождествляются с низковозбужденными переходами нейтральных металлов. Оценки, выполненные в ЛТР-приближении, показали, что вещества, находящегося над областью формирования эмиссии, достаточно как для формирования спектра TiO, так и наблюдаемых показателей цвета [37]. Этот вывод позволяет разобраться в картине лучевых скоростей, наблюдаемых в оптическом диапазоне. В синей области спектра наблюдаются смещения линий поглощения, принадлежащих нейтральным атомам. Соответствующие лучевые скорости возрастают в среднем на 1 км/с при изменении потенциала нижнего уровня на 1 эВ [38]. В ИК-области спектра (1.5-2 мкм) наблюдается раздвоение вращательных линий колебательных полос СО и ОН [39]. В этом случае, при минимальном значении коэффициента непрерывного поглощения (см. [3, рис. 8]), наблюдается как спектр оболочки, так и спектр фотосферы. В синем диапазоне наблюдается преимущественно абсорбционный спектр оболочки, которая не повторяет периодические смещения фотосферных слоев. Лучевые скорости центра звезды, определенные по наблюдениям околозвездных оболочек в линиях SiO, ближе к лучевым скоростям, определяемым в видимом диапазоне по эмиссионным линиям, чем к "абсорбционным" скоростям [40, 41]. Степень линейной поляризации в оптических спектрах мирид, полученных со средним разрешением, возрастает в кантах молекулярных полос [42]. Температуры, определенные по кантам колебательных полос αсистемы ТіО, низкие [43] и характеризуют скорее оболочку, чем атмосферу. Спекл-интерферометрия мирид показала, что радиус звезды, измеренный в полосе шириной 50-100 Å, при переходе от участка, относительно свободного от молекулярного поглощения, к сильной полосе TiO, - увеличивается вдвое [44]. Все эти результаты свидетельствуют о том, что у М-мирид в наземном ультрафиолете мы будем регистрировать преимущественно спектр околозвездной оболочки, а также эмиссионные линии хромосферного происхождения.

7. ВЫВОДЫ

Наблюдения с высоким спектральным разрешением в наземном ультрафиолете представляются нам перспективными для изучения строения и динамики околозвездных оболочек M, S и Cзвезд. Исследования эмиссионного спектра, особенно поиск его вариаций на временах, коротких по сравнению с характерным временем изменений абсорбционного спектра, позволят уточнить строение переходного слоя и хромосферы. В обоих случаях большая роль отводится спектрополяриметрическим наблюдениям. Мы не затрагивали проблему изучения хромосфер более горячих звезд, где оптимальным диапазоном является внеатмосферный ультрафиолет.

БЛАГОДАРНОСТИ

Работа поддержана РФФИ (проект 07-02-00247-а) и Программой Отделения физических наук РАН.

СПИСОК ЛИТЕРАТУРЫ

- В. Г. Клочкова, В. Е. Панчук и М. В. Юшкин, в Ультрафиолетовая Вселенная. П., ред. Б. М. Шустов, М. Е. Сачков, и Е. Ю. Кильпио (Янус-К, Москва, 2008), сс. 46–59.
- В. Е. Панчук, В. Г. Клочкова и др., Астрофизический бюллетень 64, 392 (2009).
- 3. В. Е. Панчук, В. Г. Клочкова и М. В. Юшкин, Астрофизический бюллетень **65**, 174 (2010).
- 4. W. S. Adams and A. H. Joy, Publ. Astronom. Soc. Pacific 43, 407 (1931).
- 5. W. P. Bidelman, Astrophys. J. Suppl. 1, 175 (1954).

- O. C. Wilson and M. K. V. Bappu, Astrophys. J. 125, 661 (1957).
- 7. O. C. Wilson, Astrophys. J. 130, 499 (1959).
- 8. O. C. Wilson, Astrophys. J. 138, 832 (1963).
- 9. O. C. Wilson, Astrophys. J. 153, 221 (1968).
- 10. O. C. Wilson and R. Woolley, Monthly Notices Roy. Astronom. Soc. **148**, 463 (1970).
- 11. O. C. Wilson, Astrophys. J. 160, 225 (1970).
- 12. A. H. Vaughan, G. W. Preston, and O. C. Wilson, Publ. Astronom. Soc. Pacific **90**, 267 (1978).
- 13. O. C. Wilson, Astrophys. J. 226, 379 (1978).
- A. H. Vaughan and G. W. Preston, Publ. Astronom. Soc. Pacific 92, 385 (1980).
- 15. D.R. Soderblom, D.K. Duncan, and D.R.H. Johnson, Astrophys. J. **375**, 722 (1991).
- 16. H. J. Rocha-Pinto and W. J. Maciel, Monthly Notices Roy. Astronom. Soc. **298**, 332 (1998).
- 17. W. Livingston et al., Astrophys. J. 657, 1137 (2007).
- 18. G. Pace, L. Pasquini, and S. Ortolani, Astronom. and Astrophys. **401**, 997 (2003).
- 19. W. Livingston, Nature **297**, 208 (1982).
- 20. C. A. Prieto et al., Astrophys. J. 526, 991 (1999).
- 21. J. Tinbergen and C. Zwaan, Astronom. and Astrophys. **101**, 223 (1981).
- 22. G. Herzberg, Astrophys. J. 107, 94 (1948).
- W. P. Bidelman and D. Pyper, Publ. Astronom. Soc. Pacific 75, 389 (1963).
- 24. R. Weymann, Astrophys. J. 136, 844 (1962).
- 25. A. M. Boesgaard and C. Magnan, Astrophys. J. **198**, 369 (1975).
- 26. A. M. Boesgaard and H. Boesgaard, Astrophys. J. **205**, 448 (1976).
- 27. P. Bouchet, M. Querci and F. Querci, Messenger **31**, 7 (1983).
- 28. К. В. Бычков и В. Е. Панчук, Астрон. Журн. **54**, 340 (1977).
- 29. M. Querci and F. Querci, Astronom. and Astrophys. **147**, 121 (1985).
- 30. H. R. Johnson et al., Astrophys. J. 311, 960 (1986).
- 31. D.G. Luttermoser et al., Astrophys. J. **345**, 543 (1989).
- 32. P. W. Merrill, Astrophys. J. 103, 275 (1946).
- 33. P. W. Merrill, Astrophys. J. 105, 360 (1947).
- 34. P. W. Merrill, Astrophys. J. 106, 274 (1947).
- 35. D. Gillet, P. Bouchet, and E. Maurice, Messenger 34, 38 (1983).
- В.Е. Панчук, Письма в Астрон. Журн. 4, 374 (1978).
- 37. В.Е. Панчук, Письма в Астрон. Журн. **4**, 314 (1978).
- 38. P.W. Merrill and J.L. Greenstein, Astrophys. J. Suppl. **2**, 225 (1956).
- 39. K. H. Hinkle, Astrophys. J. **220**, 210 (1978).
- 40. M. J. Reid, Astrophys. J. 207, 784 (1976).
- 41. M.J. Reid and D.F. Dickinson, Astrophys. J. **209**, 505 (1976).
- 42. I. D. Landstreet and I. R. P. Angel, Astrophys. J. **211**, 825 (1977).
- 43. С. М. Морозова и В. Е. Панчук, Сообщ. САО **22**, 27 (1978).
- 44. A. Labeyrie et al., Astrophys. J. 218, L75 (1977).

STELLAR SPECTROSCOPY IN GROUND-BASED ULTRAVIOLET. III: CHROMOSPHERES AND ENVELOPES OF COOL STARS

V.E. Panchuk, V.G. Klochkova, M.V. Yushkin

In historical perspective we discuss selected tasks in the studies of stellar chromospheres and circumstellar envelopes using spectroscopic methods in the ground-based ultraviolet. We illustrate our discussion by fragments of spectra that we took with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences.

Key words: Stars: chromospheres